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Abstract. A new logic, agents-indexed computation tree logic (ACTL),
is obtained from the standard computation tree logic CTL by adding
some agent operators. ACTL is intended to appropriately formalize rea-
soning about agents-based (or distributed) concurrent systems within
an executable temporal logic by model checking. The model-checking,
validity and satisfiability problems of ACTL are shown to be decidable.

1 Introduction

Verifying agents-based (or distributed) concurrent systems is growing impor-
tance in Computer Science and Artificial Intelligence, since computer systems
are generally used by or composed of multi-agents in parallel. It is known that
computation tree logic (CTL) [2] is one of the most useful temporal logics for
verifying concurrent systems by model checking [3]. In this paper, an extension
of CTL, called an agents-indexed computation tree logic (ACTL), is introduced
by adding some agent operators ♥i (agent i has information) and ♥c (common
information) to CTL.

ACTL is intended to appropriately formalize reasoning about agents-based
concurrent systems within an executable temporal logic by model checking.
ACTL has some useful descriptions concerned with such agents-based reason-
ing. An example of such descriptions is: AG(♥c password→♥iAF login) which
means: “If the login password of a computer is regarded as common information
in the group A := {1, 2, ..., n} of agents, then an agent i in A will eventually be
able to login the computer.”

In this paper, a theorem for embedding ACTL into CTL is proved, and by
using this embedding theorem, the model-checking, validity and satisfiability
problems of ACTL are shown to be decidable. The embedding and decidability
results indicate that we can reuse the existing CTL-based algorithms for model-
checking, validity and satisfiability. This compatibility with CTL is regarded as
a merit of ACTL.

The proposed agent operators in ACTL differ from the standard knowledge
operators. In the following, we explain the proposed agent operators ♥i and ♥c.
The symbol ω is used to represent the set of natural numbers, and the symbol
N is used to represent a fixed set {1, 2, ..., n} of agents. The symbol K is used
to represent the set {♥i | i ∈ N} of agent operators, and the symbol K∗ is
used to represent the set of all words of finite length of the alphabet K. For



example, {ια | ι ∈ K∗} denotes the set {♥i1 · · · ♥ik
α | i1, ..., ik ∈ N, k ∈ ω}.

Greek lower-case letters ι and κ are used to represent any members of K∗. The
symbol Km is used to represent the set of all words of at most “m-length”
of the alphabet K. Note that Km is a subset of K∗, and is also finite. This
finiteness condition on Km is critical for obtaining an embedding theorem into
CTL. Then, the characteristic axiom scheme for ♥i and ♥c is: ♥cα ↔

∧
{ια | ι ∈

Km}. This axiom scheme corresponds to a “m-bounded” version of the so-called
iterative interpretation of common knowledge: ♥cα ↔

∧
{ια | ι ∈ K∗}, which is

obtained from the m-bounded version by replacing Km with K∗. If we read ♥iα
as “agent i has information α,” then we can understand ♥cα as “α is finitely
approximated common (or group) information of agents.” In order to formalize
these operators, we need to introduce an agents-indexed Kripke structure, which
has agents-indexed satisfaction relations |=ι (ι ∈ K∗).

Some related works are reviewed below. There are some agents-based or
knowledge-based approaches to model checking. Some agents-based model check-
ers have successfully been developed [8, 4, 6, 5]. For example, an approach to
model checking for the modal logic of knowledge and linear-time in distributed
systems with perfect recall was established by van der Meyden and Shilov [8].
They showed that some model checking problems with or without a common
knowledge operator are undecidable or PSPACE-complete. There are some ap-
proaches to cooperate CTL with knowledge or multi-agent operators. A multi-
agent extension ALT of CTL was introduced by Alur et al. [1], and an epistemic
extension ATEL of ALT was studied by van der Hoek and Wooldridge [7]. Some
epistemic extensions of CTL were studied by van der Meyden and Wong [9]. In
particular, the model checking complexity for the logic CKBm, which has a sim-
ilar bounded setting to the common knowledge operator in ACTL, was shown
to be EXPTIME-complete at least for systems without perfect recall.

2 Agents-Indexed Computation Tree Logic

Let n be a fixed positive integer. Then, the symbol A is used to represent the
set {1, 2, ..., n} of agents. Formulas of ACTL are constructed from countable
atomic formulas, → (implication) ∧ (conjunction), ∨ (disjunction), ¬ (negation),
♥i (i ∈ A) (information or knowledge, “agent i knows”), ♥c (bounded-depth
common information or knowledge), X (next), G (globally), F (eventually), U
(until), A (all computation paths) and E (some computation path). The symbols
X, G, F and U are called temporal operators, and the symbols A and E are called
path quantifiers. The symbol ATOM is used to denote the set of atomic formulas.
An expression A ≡ B is used to denote the syntactical identity between A and
B.

Definition 1 Formulas α are defined by the following grammar, assuming p ∈
ATOM and i ∈ A:

α ::= p | α→α | α∧α | α∨α | ¬α | ♥iα | ♥cα | AXα | EXα | AGα | EGα |
AFα | EFα | A(αUα) | E(αUα).



Note that pairs of symbols like AG and EU are indivisible, and that the
symbols X,G, F and U cannot occur without being preceded by an A or an
E. Similarly, every A or E must have one of X, G, F and U to accompany it.
Some operators are redundant as those in CTL, because some operators can be
obtained by the other operators (e.g., AGα := ¬EF¬α).

The symbol K is used to represent the set {♥i | i ∈ A}, and the symbol
K∗ is used to represent the set of all words of finite length of the alphabet K.
For example, {ια | ι ∈ K∗} denotes the set {♥i1 · · · ♥ik

α | i1, ..., ik ∈ A, k ∈ ω}.
Remark that K∗ includes ∅ and hence {ια | ι ∈ K∗} includes α. Greek lower-case
letters ι and κ are used to denote any members of K∗. The symbol Km is used
to represent the set of all words of at most m-length of the alphabet K. Note
that Km is finite. In the following discussion, the number m of Km is fixed as a
certain positive integer.

Definition 2 A structure 〈S, S0, R, {Lι}ι∈K∗〉 is called an agents-indexed Kripke
structure if:

1. S is the set of states,
2. S0 is a set of initial states and S0 ⊆ S,
3. R is a binary relation on S which satisfies the condition: ∀s ∈ S ∃s′ ∈

S [(s, s′) ∈ R],
4. Lι (ι ∈ K∗) are functions from S to the power set of a nonempty subset AT

of ATOM.

A path in an agents-indexed Kripke structure is an infinite sequence of states,
π = s0, s1, s2, ... such that ∀i ≥ 0 [(si, si+1) ∈ R].

The logic ACTL is then defined as an agents-indexed Kripke structure with
satisfaction relations |=ι (ι ∈ K∗).

Definition 3 Let AT be a nonempty subset of ATOM. Satisfaction relations |=ι

(ι ∈ K∗) on an agents-indexed Kripke structure M = 〈S, S0, R, {Lι}ι∈K∗〉 are
defined as follows (s represents a state in S):

1. for any p ∈ AT, M, s |=ι p iff p ∈ Lι(s),
2. M, s |=ι α1→α2 iff M, s |=ι α1 implies M, s |=ι α2,
3. M, s |=ι α1 ∧ α2 iff M, s |=ι α1 and M, s |=ι α2,
4. M, s |=ι α1 ∨ α2 iff M, s |=ι α1 or M, s |=ι α2,
5. M, s |=ι ¬α1 iff not-[M, s |=ι α1],
6. for any i ∈ A, M, s |=ι ♥iα iff M, s |=ι♥i α,
7. M, s |=ι ♥cα iff M, s |=ικ α for all κ ∈ Km,
8. M, s |=ι AXα iff ∀s1 ∈ S [(s, s1) ∈ R implies M, s1 |=ι α],
9. M, s |=ι EXα iff ∃s1 ∈ S [(s, s1) ∈ R and M, s1 |=ι α],

10. M, s |=ι AGα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, and all states
si along π, we have M, si |=ι α,

11. M, s |=ι EGα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for all
states si along π, we have M, si |=ι α,



12. M, s |=ι AFα iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is a state
si along π such that M, si |=ι α,

13. M, s |=ι EFα iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and for
some state si along π, we have M, si |=ι α,

14. M, s |=ι A(α1Uα2) iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there
is a state sk along π such that [(M, sk |=ι α2) and ∀j (0 ≤ j < k implies
M, sj |=ι α1)],

15. M, s |=ι E(α1Uα2) iff there is a path π ≡ s0, s1, s2, ..., where s ≡ s0, and
for some state sk along π, we have [(M, sk |=ι α2) and ∀j (0 ≤ j < k implies
M, sj |=ι α1)].

Definition 4 A formula α is valid (satisfiable) in ACTL if and only if M, s |=∅

α holds for any (some) agents-indexed Kripke structure M = 〈S, S0, R, {Lι}ι∈K∗〉,
any (some) s ∈ S, and any (some) satisfaction relations |=ι (ι ∈ K∗) on M .

Definition 5 Let M be an agents-indexed Kripke structure 〈S, S0, R, {Lι}ι∈K∗〉
for ACTL, and |=ι (ι ∈ K∗) be satisfaction relations on M . Then, the model
checking problem of ACTL is defined by: for any formula α, find the set {s ∈
S | M, s |=∅ α}.

Definition 6 (CTL) A Kripke structure for CTL is a structure 〈S, S0, R, L〉
such that

1. S, S0 and R have the same conditions as in Definition 2
2. L is a function from S to the power set of a nonempty subset AT of ATOM.

A satisfaction relation |= on a Kripke structure M = 〈S, S0, R, L〉 for CTL is
defined by the same conditions 1–5 and 8–15 as in Definition 3 by deleting the
superscript ι. The validity, satisfiability and model-checking problems for CTL
are defined as usual.

3 Embedding and Decidability

Definition 7 Let AT be a non-empty subset of ATOM, and ATι (ι ∈ K∗) be
the sets {pι | p ∈ ATι} of atomic formulas where p∅ := p (i.e., AT∅ := AT). The
language LA (the set of formulas) of ACTL is defined using AT, ♥i (i ∈ A), ♥c,
¬,→,∧,∨, X, F, G, U, A and E. The language L of CTL is obtained from LA

by adding
∪

ι∈K∗

ATι and deleting {♥i,♥c}. A mapping f from LA to L is defined

by:

1. for any p ∈ AT, f(ιp) := pι ∈ ATι, esp., f(p) := p,
2. f(ι(α ◦ β)) := f(ια) ◦ f(ιβ) where ◦ ∈ {∧,∨,→},
3. f(ι†α) := †f(ια) where † ∈ {¬, AX, EX, AG, EG, AF, EF},
4. f(ι†(αUβ))) := †(f(ια)Uf(ιβ)) where † ∈ {A,E},
5. f(ι♥cα) :=

∧
{f(ικα) | κ ∈ Km}.



Lemma 8 Let f be the mapping defined in Definition 7. For any agents-indexed
Kripke structure M := 〈S, S0, R, {Lι}ι∈K∗〉 for ACTL, and any satisfaction rela-
tions |=ι (ι ∈ K∗) on M , we can construct a Kripke structure N := 〈S, S0, R, L〉
for CTL and a satisfaction relation |= on N such that for any formula α in LA

and any state s in S, M, s |=ι α iff N, s |= f(ια).

Proof. Let AT be a nonempty subset of ATOM, and ATι be the sets {pι | p ∈
AT} of atomic formulas. Suppose that M is an agents-indexed Kripke structure
〈S, S0, R, {Lι}ι∈K∗〉 such that Lι (ι ∈ K∗) are functions from S to the power
set of AT. Suppose that N is a Kripke structure 〈S, S0, R, L〉 such that L is a
function from S to the power set of

∪
ι∈K∗

ATι. Suppose moreover that for any

s ∈ S and any p ∈ AT, p ∈ Lι(s) iff pι ∈ L(s). Then, the claim is then proved
by induction on the complexity of α.

• Base step:
Case α ≡ p ∈ AT: We obtain: M, s |=ι p iff p ∈ Lι(s) iff pι ∈ L(s) iff N, s |= pι

iff N, s |= f(ιp) (by the definition of f).
• Induction step: We show some cases.
Case α ≡ β→γ: We obtain: M, s |=ι β→γ iff M, s |=ι β implies M, s |=ι γ

iff N, s |= f(ιβ) implies N, s |= f(ιγ) (by induction hypothesis) iff N, s |=
f(ιβ)→f(ιγ) iff N, s |= f(ι(β→γ)) (by the definition of f).

Case α ≡ ♥iβ: We obtain: M, s |=ι ♥iβ iff M, s |=ι♥i β iff N, s |= f(ι♥iβ)
(by induction hypothesis).

Case α ≡ ♥cβ: We obtain: M, s |=ι ♥cβ iff M, s |=ικ β for any κ ∈
Km iff N, s |= f(ικβ) for any κ ∈ Km (by induction hypothesis) iff N, s |=∧
{f(ικβ) | κ ∈ Km} iff N, s |= f(ι♥cβ) (by the definition of f).

Case α ≡ AXβ: We obtain: M, s |=ι AXβ iff ∀s1 ∈ S [(s, s1) ∈ R implies
M, s1 |=ι β] iff ∀s1 ∈ S [(s, s1) ∈ R implies N, s1 |= f(ιβ)] (by induction
hypothesis) iff N, s |= AXf(ιβ) iff N, s |= f(ιAXβ) (by the definition of f).

Case α ≡ A(βUγ): We obtain:

M, s |=ι A(βUγ)
iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is a state sk along π such

that [M, sk |=ι γ and ∀j[i ≤ j < k implies M, sj |=ι β]
iff for all paths π ≡ s0, s1, s2, ..., where s ≡ s0, there is a state sk along π such

that [N, sk |= f(ιγ) and ∀j[i ≤ j < k implies N, sj |= f(ιβ)] (by induction
hypothesis)

iff N, s |= A(f(ιβ)Uf(ιγ))
iff N, s |= f(ιA(βUγ)) (by the definition of f).

Q.E.D.

Lemma 9 Let f be the mapping defined in Definition 7. For any Kripke struc-
ture N := 〈S, S0, R, L〉 for CTL, and any satisfaction relation |= on N , we
can construct an agents-indexed Kripke structure M := 〈S, S0, R, {Lι}ι∈K∗〉 for
ACTL and satisfaction relations |=ι (ι ∈ K∗) on M such that for any formula
α in LA and any state s in S, N, s |= f(ια) iff M, s |=ι α.



Proof. Similar to the proof of Lemma 8. Q.E.D.

Theorem 10 (Embedding) Let f be the mapping defined in Definition 7. For
any formula α in LA, α is valid in ACTL iff f(α) is valid in CTL.

Proof. By Lemmas 8 and 9. Q.E.D.

Theorem 11 (Decidability) The model-checking, validity and satisfiability prob-
lems of ACTL are decidable.

Proof. By the mapping f defined in Definition 7, a formula α of ACTL can
finitely be transformed into the corresponding formula f(α) of CTL. By Lemmas
8 and 9 and Theorem 10, the model-checking, validity and satisfiability problems
for ACTL can be transformed into those of CTL. Since the model checking, va-
lidity and satisfiability problems for CTL are decidable, the problems for ACTL
are also decidable. Q.E.D.
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