
pMix-Touch

Oliver Larkin

Music Research Centre, University of York, YO10 5DD, UK
oliver.larkin@york.ac.uk

1. Abstract

pMix-touch is an extension of the author’s pMix software [1], which is a
composition, sound design and performance tool based on multi-layered preset
interpolation that was originally created as a Max MSP library (int.lib) and
presented at the ICMC in 2007 [2]. pMix facilitates the control of VST plug-in
parameters from a 2D graphical interface that has been designed to provide
intuitive real-time feedback and to allow the control of multiple parts of a signal
processing graph from one abstract “Interpolation Space” (hence multi-layered
preset interpolation).

pMix-touch allows The Interpolation Space to be controlled using a multi-touch
interface and displayed remotely on the screen of a tablet or smart phone. This is
implemented using an embedded web server, which runs inside the pMix
application on a host computer. Client devices visit a webpage and data is
exchanged with the server using the HTML5 websocket protocol [3]. The interface
is drawn on the web page using JavaScript and the HTML5 canvas element [4].

The paper describes a new extension for Max MSP, which has been developed in
order to provide a lightweight embedded web server solution with websocket
support, allowing any Max MSP patch to be controlled remotely via a web page.

2. Introduction

Preset interpolation is available in many audio software packages and is a
convenient way of controlling multiple parameters, discovering new hybrid sounds
and generating smooth transitions [2]. Essentially preset interpolation acts as a
few-to-many mapping system where a small number of parameters (e.g. X and Y
coordinates on a two dimensional Cartesian space) control the many parameters of
a synthesiser or effect.

pMix is a standalone application that was developed by the author using Max MSP
and the int.lib library described in [2]. It uses four instances of the int.vst patch to
provide four VST plug-in slots, which can be routed in series or parallel. In each
plug-in slot the user can select parameters to use in preset interpolation, removing
any parameters that do not interpolate smoothly. The application can be used
during live performance, or in the studio with DAW software via Rewire or the

KES Transactions on Innovation in Music: Vol 1 No 1
Special Edition - Innovation in Music 2013 : pp.32-40 : Paper im13bk-003

Copyright © 2014 Future Technology Press and the authors
32

internal recording and playback functions. It comes with a collection of sound
generation and processing plug-ins that have been developed with preset
interpolation in mind. The plug-ins cover a range of experimental DSP techniques
used in computer music (noise generators, resonators, frequency modulation
synthesis, formant filtering, frequency shifting).

The main user interface used in pMix is a window called The Interpolation Space
(abbreviated to iSpace), which once the user has designed their setup, can be
maximized and presented as the sole interface used during performance. It shows
an arrangement of presets represented as coloured circles (each layer represents
a particular VST plug-in and has its own colour). The user navigates around the
iSpace with the mouse (or via MIDI/ OSC control messages) and the parameters of
the layer’s associated plug-in are interpolated. An automation window allows
breakpoint transitions to be sequenced or for the user to record and play back
freehand gestures.

Figure 1. pMix User Interface

pMix was awarded the second prize at the LOMUS 2008 International Music
Contest [5]. It is available for free on the Mac App Store [1] and has been
downloaded over 5000 times since version 1.0 was released in January 2012. It
was recently chosen as one of the interfaces used in the Inventor Composer
Coaction [6] at the University of Edinburgh, and received positive feedback from
users.

pMix-Touch
Oliver Larkin

33

When pMix was first developed, multi-touch interfaces were in their infancy and
were not widely available. The iSpace, with its two-dimensional map of multiple
layers of circles, seems well suited to multi-touch control. A single touch could
control each layer’s interpolation point, or multiple touch devices could each be
assigned a layer. Gestures could facilitate the placing of presets. The rest of this
paper will discuss the technical approaches taken in order to make the iSpace
multi-touchable.

3. Making pMix Touchable

Several options were considered:

• Write a script for an existing multi-touch control app
(e.g. Hexler’s TouchOSC [7] or Cycling74’s Mira [8])

• Develop a bespoke iOS/Android app
• Develop a web-based interface and embed a webserver in pMix

None of the existing scriptable control apps offered enough flexibility to recreate
the pMix interpolation space on a touch screen, and this option would not have
provided a smooth user experience. It would also require purchasing a third party
application. The closed nature of the iOS app store, and the fact that at least two
apps would have to be made and maintained for the Android and iOS platforms
made making a bespoke application un-appealing, although it would offer the best
performance since it would allow low level access to accelerated graphics routines
and operating system integration. After investigating the current browser support
for recent HTML5 technologies, it was clear that the final option of a web site had
the most promise since it could be viewed using any device with a web browser.
Performance would probably not be an issue since browsers are very well
optimized due to the strong competition in the marketplace. The ease of setup is a
key issue and the simplicity of visiting a website is appealing, since providing that
the desired TCP ports are not blocked on the network, getting connected should be
as simple as typing in a web address in the browser. Apple document iOS web-
applications and provide a simple method for saving a webpage bookmark to the
home screen, which can make the user experience roughly comparable to using a
native application [15].

4. Related work and technologies

For a detailed overview of previous implementations and a variety of visual
approaches to preset interpolation the reader is directed to [2]. Notable
developments since the work described in [2] include the “nodes” object included in
Max MSP since version 5.16 (which is based on a similar gravity model as that
used in int.lib), Martin Marier's implementation for SuperCollider [9] and Liam

pMix-Touch
Oliver Larkin

34

O'Sullivan's MorphOSC for Processing [10], which features an implementation of
multi-layered preset interpolation.

An early attempt at controlling Max MSP remotely via the web browser was Olaf
Matthes’ flashserver external [11], which allows bi-directional communication
between Max MSP and Adobe Flash / ActionScript over local network or over the
internet. It establishes a full-duplex TCP connection using a Flash XMLSocket, and
allows communication with individual clients. This is a flexible solution and has
been used in many projects since its creation over ten years ago [11].

Nowadays the web is moving away from closed-source proprietary technologies
such as Flash, which is not supported on many popular devices such as the iPad.
One alternative that the author explored in 2011 was to run an embedded web
server in Max MSP [12] and for clients to continuously poll the server to check if
new data is available (known as AJAX polling, a commonly used technique in the
increasingly dynamic content of modern websites). This is obviously a fairly
inefficient approach especially for low-latency control, although it has worked well
for simple projects over a LAN and WLAN. In the author’s implementation
individual clients all receive the same data. With an increased number of clients,
the demands on the webserver are dramatically increased due to a vast amount of
polling, so this solution does not scale well. This issue has been recognized by the
web development community, and has resulted in the creation of the HTML5
websocket protocol [3], which has achieved widespread adoption [13]. The
websocket protocol allows full-duplex transmission of data over a single TCP
connection, and importantly the server can send data to the client without the client
requesting it. The data can be transmitted on Ports 80 and 443 (the standard ports
used for HTTP and HTTPS traffic), which makes it significantly easier to access on
the web and across networks where firewalls block non-web ports and network
address translation (NAT) is a problem.

Many approaches to communicating with applications like Max MSP via the web
browser use an intermediary application, which provides the web server
functionality and forwards control information to Max using either OSC or inter-
application MIDI. A popular application for this purpose is node.js [14] which allows
web servers to be written in JavaScript and has been extended with OSC and MIDI
modules. Several node.js users have created examples of communication between
audio applications and the web browser using this approach. Another intermediary
application that achieves similar results is Charlie Robert’s Interface-Server [15],
which has been designed as a bridge between his HTML5 canvas-based
JavaScript library Interface.js and audio applications running on a host computer.
Using an intermediary application offers advantages in terms of flexibility, and
perhaps reliability due to splitting responsibilities between applications; however,
there are several reasons to prefer an embedded solution. By embedding the web
server the application becomes self-contained (apart from the optional remote UIs)
and is therefore easier to distribute and to configure. Embedded servers are also
potentially slightly faster, since there are fewer endpoints in the chain. Lastly by
embedding the server, it can provide functionality for reading and writing to data
structures that exist within the memory space of the application.

pMix-Touch
Oliver Larkin

35

5. Websocket support for Max MSP

Websocket support has been added to Max MSP via the development of an
external object ol.wsserver, which embeds Civetweb [16] a lightweight, MIT
licensed, open-source web server. The object currently supports text-based
websocket communication which allows data to be sent and received between up
to 32 individual clients (this is an arbitrary limit and could be increased). Numeric
data is converted into a textual representation, which is sent between client and
server via the websocket text opcode [3]. The Max message tx sent into the object
with an argument specifying the message to transmit will be routed to all the
connected clients – an optional integer argument specifies the index of a specific
client to send to (see Figure 2). Messages sent from the object are prefixed with rx
for data received from clients, and cx for information about clients connecting and
disconnecting.
The object has been programmed to enable multiple webservers to be run within
Max at any one time (providing a different port number is provided as the first
argument in the ol.wsserver object box).

Figure 2. ol.wsserver Max object - basic usage

pMix-Touch
Oliver Larkin

36

The textual data sent between client and server can be formatted arbitrarily, for
instance a user could use OSC style syntax to target different aspects of the client
or server, providing that the correct parsing was implemented on either end. For
more complex applications it may be desirable to send the entire state of a Max
MSP patch to/from the clients. In this case it’s possible to serialize the state using
JavaScript Object Notation (JSON). This is particularly convenient since Max MSP
has its own support for JavaScript since version 4.5. A single JavaScript object can
be used to encapsulate the state of the patch in server-side and client-side
representations. In fact pMix/int.lib is mostly written using JavaScript, so this
provides a relatively simple way of mirroring the data in the remote user interface.
An example of how this might be handled on the client side can be seen in
Figure 3.

Figure 3. Client-side JavaScript code for websocket handling

pMix-Touch
Oliver Larkin

37

6. A new remote Interpolation Space using Interface.js and the HTML5 canvas

To recreate the iSpace in the browser, a new widget was developed for
Interface.js. Integrating with an existing, mature UI library seemed logical, allowing
use of existing widgets for buttons and sliders if necessary. Other reasons for this
choice are that Interface.js already supports multiple input modalities (mouse
interaction and multi-touch), handles widget layout and renders all its widgets using
the HTML5 canvas without using CSS, meaning that the code can be self-
contained.

7. Conclusion and Future Work

The new version of pMix - pMix-Touch will enable the exploration of new methods
of navigating and designing the iSpace using multi-touch gestures. This paper has
detailed the groundwork required to get the application to that stage, namely the
development of a new embedded web server object for Max MSP. It has provided
commentary on the existing approaches to making remote interfaces, and
described advantages of using an embedded websocket server.

Developing ol.wsserver has opened up lots of possibilities for connecting Max MSP
patches to the web browser and for communicating with multiple remote users in
real-time. The advances in HTML5 provide exciting possibilities for advanced
graphical interfaces that can be operated remotely and are relatively platform
independent. The current functionality of the object could be enhanced to expose
more generic HTTP server features that are available in Civetweb, such as direct
handling of HTTP GET/POST requests. Websocket support could be enhanced to
enable secure connections and to enable transmission of binary data, which should
be faster and more suitable for certain types of data. One option is to support Max
MSP 6’s dictionaries as a way of sharing state between server and client in an
organized, hierarchical way. Another idea is to make the object respond to
jit_matrix messages and to publish the binary data from these matrices to
connected clients (jit_matrix is the data holder used to represent matrices and
images in Max MSP/Jitter). The next step in this direction will be an object capable
of streaming/receiving real-time audio and video to/from multiple clients, which is
something that should be possible using other emerging technologies such as
WebRTC and HTML5 Audio. Also, when WebGL is widely supported, this should
be an interesting alternative to the HTML5 canvas, and should provide some
advantages in terms of rendering speed, with potential for more sophisticated
graphics explicitly rendered on the GPU.

Revisiting pMix after several years since it was first developed, many limitations of
the original Max MSP implementation have been discovered, prompting work on a
complete rewrite of the application in C++. The main aspect that can be improved
is that the application can become more dynamic, with a potentially limitless
number of plug-ins and more sophisticated use of screen space, supporting a

pMix-Touch
Oliver Larkin

38

modular audio graph, like that of Max MSP, rather than a static configuration of
four plug-ins in series or parallel.

pMix v1 is available for free on the Mac App Store[1].

ol.wsserver for Max MSP is free and Open Source, under the MIT license. Source
code and binaries are available at [17].

8. References

[1] pMix – Mac App Store
https://itunes.apple.com/gb/app/pmix/id492576037?mt=12

[2] Larkin, O. “Int.lib - A Graphical Preset Interpolator for Max MSP”. Proceedings
of the International Computer Music Conference (ICMC), 2007. Copenhagen,
Denmark

[3] Internet Engineering Task Force (IETF) RFC6455 Websocket Protocol
http://tools.ietf.org/html/rfc6455

[4] W3C HTML5 Canvas Element Specification
http://www.w3.org/TR/2dcontext/

[5] LOMUS 2008
http://concours.afim-asso.org/2008/

[6] Inventor Composer Coaction
http://people.ace.ed.ac.uk/students/s9809024/icc/pMix.htm

[7] TouchOSC
http://hexler.net/software/touchosc

[8] Tarakajian, S, Zicarelli, D, Clayton, J. “Mira: Liveness in iPad Controllers for
Max/MSP”. Proceedings of the 13th International Conference on New Interfaces
for Musical Expression (NIME), 2013. Daejeon, Republic of Korea.

[9] Marier, M., “Designing Mappings for Musical Interfaces Using Preset
Interpolation”. Proceedings of the Conference on New Interfaces for Musical
Expression (NIME), 2012, Michigan, USA.

[10] O'Sullivan, L. "MorphOSC - A Toolkit for Building Sound Control GUIs with
Preset Interpolation in the Processing Development Environment." Linux Audio
Conference, (LAC) 2013

[11] Flashserver
http://www.nullmedium.de/dev/flashserver/

[12] Max Web Control
http://cycling74.com/toolbox/max-web-control

[13] Can I use Web Sockets?
http://caniuse.com/websockets

pMix-Touch
Oliver Larkin

39

[14] node.js
http://nodejs.org/

[15] Roberts, C, Graham W, and Matthew W. "The Web Browser As Synthesizer
And Interface" Proceedings of the 13th International Conference on New
Interfaces for Musical Expression (NIME), 2013. Daejeon, Republic of Korea.

[16] Civetweb on SourceForge:
http://sourceforge.net/projects/civetweb/

[17] ol.wsserver source code/binaries
https://github.com/olilarkin/wsserver

pMix-Touch
Oliver Larkin

40

