Consideration of Dynamics in Knowledge Prioritization

Preparing an Efficient Company-Internal Knowledge Transfer

Dipl.-Wi.-Ing. <u>Alexander Reik</u> Dr.-Ing. Maik Maurer

Agenda

- Introduction in the Institute and its focus
- Background of the project
- Representing knowledge and its structure with knowledge maps
- How to prioritize knowledge preparing a successful transfer
- Future work

Institute of Product Development Technische Universität München

Prof. Dr.-Ing. Udo Lindemann www.pe.mw.tum.de

TUM Faculties

TUM Faculties

Activities of the Institute

Research Areas

Innovation & Creativity Systems Engineering Engineering Processes Knowledge Transfer & Knowledge Management Cost Management

Background of the research project

> Why an efficient knowledge transfer is necessary!?

Industry partners

- 2 companies from Bavaria
- OEM for banknote counting and inspecting machines (Large company)
- Supplier for electric circuit protection devices (SME)

Procedure and objectives of the project

Procedure

- 1. Institute advertised the governmental-funded knowledge transfer project and won the two industry companies for participating
- 2. Researchers developed the transfer methodology and adapted the contents of the work packages after periodic workshops with representatives from the companies
- 3. Methodology is evaluated and documented currently (finishes 2-year project)

• Objectives

- Improvement and enhancement the found knowledge domains
- Development of a way to elicit knowledge and create knowledge maps without additional staff – by employees themselves
- Development of the holistic knowledge transfer methodology
- Consideration and integration of practically relevant circumstances

Improving the company-internal knowledge transfer with knowledge maps

Knowledge Map

- Graphical representation of knowledge (of an employee) in the form of a map
- Different types of knowledge elements
- Relations between knowledge elements

Improving the company-internal knowledge transfer with knowledge maps

Rough procedure of developed methodology for knowledge transfer:

- 1. Elicitation of knowledge and representing it with knowledge maps
- 2. Comparison of knowledge maps for identifying knowledge lacks
- 3. Prioritization of knowledge to be transferred due to scarce resources
- 4. Use of knowledge based company-internal systems where possible to reduce face-to-face effort
- 5. Personal knowledge transfer of remaining knowledge between mentor and mentee

Meta-Knowledge Map

Exemplary knowledge map from case study

© 2014 Reik, Maurer

IKT'14 Knowledge Prioritization | Reik | April 4th 2014 14

Previous work in knowledge prioritization

© 2014 Reik, Maurer

Enhancement of the Approach and Dynamization

© 2014 Reik, Maurer

Enhancement of the approach and dynamization – ecxemple t = 0

Knowledge element Task

Product Development

Κ

Т

© 2014 Reik, Maurer

Enhancement of the approach and dynamization – ecxemple t =

Knowledge element Task

Product Development

© 2014 Reik, Maurer

Κ

Т

Technische Universität München

Efficiency

2

2

0,29

0,20

0,40

0,00

0,50

0,25

0

Rank

3

5

2

6

1

4

6

Depiction in the input-output-portfolio

> Note: Elements don't have to but they can change their positions due

to their interrelations after transferring a certain other one!

Future Work

- Weighting of added output depending on enabling "only" another knowledge element or a task
 K ← K => 0.5
 K ← T => 1.0
- Enhancing the totally numerical approach through integrating the effort for learning specific knowledge elements estimated by mentors

Thank you for your attention!

Acknowledgment The authors thank the German Research Foundation for funding the research project

