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Abstract 

Process data from a hot rolling mill is analysed to determine the variation of the 
load requirements of the mill stands with temperature for 13 high strength steel 
grades. The relationship is shown to be highly non-linear making prediction of 
rolling loads very difficult. Feed forward multi-layer perceptron (MLP) neural 
networks are suggested as a means of prediction.  

A methodology is presented for the generation of a system of MLP neural networks 
for offline prediction of required rolling forces and also motor powers during 
finishing rolling of a range of high strength steels. The networks are trained using 
approximately 12000 coils worth of process data, and prediction errors are less 
than 10% for load and power in over 90% of the data for most of the stands 
measured.  

1. Introduction 

In recent years there has been an increasing adoption of advanced high strength 
steels within the automotive sector [1]. These steels, such as dual phase, complex 
phase and boron added hot forming grades, require richer chemistries than 
traditional high strength low alloy (HSLA) or low alloy steels. Typical alloying 
additions include niobium, manganese, chromium, silicon, titanium and boron. 
These steels exhibit higher flow stresses at elevated temperatures, resulting in 
greater power and force requirements during processing.   

The final process in production of high strength steels is hot rolling where the 
gauge of a strip is reduced to a specification required for market. The gauge is 
reduced by passing the heated strip through a series of finishing stands in a hot 
rolling mill. In each finishing stand the gauge of the steel strip is sequentially 
reduced by passing it through a set of rolls. Typically the strip enters the rolling mill 
with a thickness of 30–40mm which is reduced to a finishing gauge of 0.8-2.2mm 
(when cooled). 

To optimise production it is desirable to maximise the width of the strip and speed 
at which it moves through the mill. These parameters are limited by two key factors 
– the roll separating force exerted by the strip on the rolls during processing and 
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the power requirement of the roll motors. The roll separating force, forces the rolls 
apart reducing the reduction possible by each stand. Hydraulic presses are used to 
counter act the roll separation force so the reduction is limited by the load they can 
produce. The speed at which the strip can move through the mill is limited by the 
motor power.      

In the development of new high strength steels and processing of existing grades it 
would be a major advantage to be able to predict rolling loads and powers required 
of the mill prior to production. Historically, a large volume of work has been 
undertaken, producing analytical relationships between flow stress and roll force. 
Orowan and Ing [2] developed a numerical method to calculate the distribution of 
pressure over the arc of contact between the roll and the strip. Local roll 
deformation is treated as a 2D plastic deformation. Sims [3] uses and extends the 
methods developed by Orowan and Ing [2] to calculate normal roll pressure, roll 
load and torque in hot rolling mills. A simplified version of Sims [3] model which 
gives similar results was presented by Ford and Alexander [4]. Attempts have also 
been made at predicting flow stress and rolling forces as a function of chemistry 
and processing history through a combination of numerical models, constitutive 
equations finite element analysis and empirical models. Misaka and Yoshimoto [5] 
develop an expression for mean flow stress by considering the effects of strain, 
strain rate and temperature independently. A semi-empirical model developed by 
Siciliano and Jonas [6] to calculate flow stresses in the strip based on Sims 
equations and data from a seven stand rolling mill for microalloyed Nb, multiply-
Alloyed Cr-Mo, and plain C-Mn steels. In a following work Siciliano and Poliak [7] 
extend this model to include alloying and microalloying effects. Constitutive 
equations based on an idealized hot rolling process are used in a finite element 
model by Rudkins and Evans [8]. The constitutive equations were based on 
experimental plane strain compression tests. Serajzadeh [9] predicts the flow 
behaviour of rolled steel using on a 2D finite element model and a first order rate 
equation. The predicted roll forces are comparable with experimental data.  

Due to the complexity of the hot rolling process, analytical treatments must make a 
number of assumptions regarding factors such as surface friction, inter-stand 
cooling, adiabatic heating in the roll bite and roll flattening. Once microstructure is 
incorporated a large volume of experimental data must also be produced to 
support the analysis of rates of recrystallization, grain growth, precipitate 
nucleation and growth, and the impact of grain size or dislocation density on flow 
stress. All of these factors are influenced by the composition of the steel. 
Bakkalogu [10] shows that the strength of HSLA steels can be improved by 
controlled rolling in the two-phase region. The increased strength is shown to be 
related to changes in microstructure. Jeong [11] demonstrates that hot rolling in the 
ferrite or austenite region affects the Lankford parameter of ultra-low carbon Ti-
interstitial-free steel. 

An alternative technique to analytical models is the use of neural network models 
for prediction and control. Neural networks are able to fit highly complex nonlinear 
functions and have been applied in the process automation of more than 40 rolling 
mills worldwide [12]. They have been utilized by a number of researchers for the 
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prediction of rolling forces, in combination with other optimisation techniques such 
as genetic algorithms, on-line adaptive-control, or in a combinatorial fashion for the 
correction of mathematical models. Schlang et al [12] reviews the use of neural 
networks installed on steel mills worldwide. They are currently used to predict 
required rolling loads from previous process data. The author that development of 
artificial intelligence techniques will allow all aspects of steel production to be 
automated resulting in higher plant efficiencies. In an earlier work Schlang [13] 
describes a combined analytical/ neural network model where the analytical 
models are used as set points in the neural network training data. Son et al [14] 
use neural networks to predict the rolling force required in a hot rolling mill. The 
training data for the network is based on analytical models. A genetic algorithm is 
used to find an optimum network architecture. In a preceding paper Son et al [15] 
assess the practicality of training neural networks during hot mill operation.  

The authors are only aware of two previous papers predicting power utilization in 
shape rolling, and by extension flat rolling, both produced by Behzadipour et al 
[16], [17]  but the volume of experimental data in those studies was low. 

In this work, rolling forces and motor powers for a seven stand four high finishing 
mill are predicted using neural networks. The geometry of the mill is shown in 
Figure 1 .These results are compared with measured industrial process data from 
a 7 stand 4 roll high hot rolling mill. The industrial process data covers 
approximately 12000 coils of rolled steel and 13 steel grades.     

 

Figure 1 Mill geometry 

In the first part of this work flow stress is calculated for 13 steel grades during 
reduction as a function of the measured roll separating force and reduction. By 
comparing the calculated mean flow stress in each stand with the mean 
temperature of strip moving through the stand non-linear behaviour is observed. 
This is shown to be consistent with dynamic recrystallization and accumulated 
strain effects [18]. 

In the second part of this work a methodology is described for producing a feed 
forward multi-layer perceptron (MLP) neural network model for offline prediction of 
rolling forces and motor powers. The networks are trained using the process data 
from all 13 steel grades provided and a validity of the predictions discussed.   
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2. Flow stress calculations 

The roll separating force is dependent on the mean flow stress (MFS) of the steel. 
Following the work of Ford and Alexander [4] the MFS can be calculated from the 
mean shear yield stress (MSYS). The following expression is used to calculate the 
MSYS in a coil undergoing reduction: 
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where P is the roll separating force(N), h0 is the strip gauge entering the stand (m), 
hf is the strip gauge exiting the stand (m), Δh is the gauge difference or draught (m) 
and R’ is the deformed roll radius (m). The deformed roll radius is calculated using 
equation 2 derived by Hitchcock [19]  
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Where, E and ν are the Young’s modulus (Pa) and Poisson’s ratio of the steel 

respectively. Finally the mean flow stress (MFS) is calculated by 

    √      

 

4) 

Using these equations we have calculated the MFS for each of the samples in the 
process data based on the measured roll separation forces for P and assuming a 
value of E of 210GPa and v of 0.3. All other parameters are taken directly from the 

process data.  

In a static recrystallization process a inverse linear relationship is expected 
between MFS and temperature is expected. To see if other recrystallization effects 
occur, the MFS was plotted against 1000/T for the 13 grades, as shown in Figure 
2. The temperature of the steel entering and exiting the hot mill are recorded in the 
process data. It is assumed that the temperature of the steel slab decreases 
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linearly as it goes through the rolling mill. This assumption is an over simplification 
but will provide qualitative information about the recrystallization effects of the 
process.  

Figure 2 shows the mean flow stress vs 1000/T for a single steel grade. The results 
are plotted in 20K temperature bins for clarity.  

 

Figure 2 Mean flow stress vs 1000/T for a single steel grade  

It can be seen that the flow stress does not increase linearly with inverse of 
temperature as would be expected for static recrystallisation (SRX). This is due to 
strain accumulation and dynamic recrystallisation, as demonstrated in Figure 3.  

 

Figure 3 Schematic of partial recrystallization and strain accumulation in hot 
rolling [18] 

At low temperatures (corresponding with the end of the hot mill) static 
recrystallisation takes place. There are two strain accumulation regions where the 
gradient of MFS vs 1000/T increases. Between these regions there is dynamic 
recrystallization (DRX) region where the MFS decreases with inverse T. The steel 
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grade in Figure 3 exhibits all of these characteristics showing that the MFS of the 
strip as it passes through the hot mill is highly non-linear. Other grades examined 
in this study exhibit similar non-linearity. The point at which the recrystallisation 
changes regime will be dependent on the chemistry and processing conditions. 
This makes the prediction of roll separating loads extremely difficult. 

Neural networks can be used as function fitting algorithm and are able to fit highly 
non-linear functions. A data set with known inputs and outputs is used to train the 
network to ‘recognise’ patterns between the input and output data. The network 
can then be used to predict outputs from a set of inputs that it has not seen before 
(the unseen input data should be of similar type and range as the training data). 
Given the complexity of roll load prediction, and the large amount of process data 
available, neural networks are an ideal tool to solve this problem.  

In the next section the suitability of multi-layer perceptron neural networks as a tool 
to predict hot mill rolling loads and also the hot mill motor powers is presented.  

3. Neural network parameters and inputs 

Feed forward multi-layer perceptron neural networks were used throughout this 
study, utilising a tan-sigmoid transfer function at all hidden nodes and a linear 
transfer function on output nodes. All generated networks were fully connected, 
and trained in MatLab [20] using the Levenberg-Marquette back propagation 
algorithm. Inputs and targets in the data set were normalised to have zero mean 
and unity variance. 

Early stopping was applied in the training of all of the investigated networks to 
reduce the risk of overfitting. The data was split into three sets, training, validation 
and testing sets. The network was trained using the training set. During each 
training epoch the network was exposed to the validation set and the MSE 
recorded. Typically at a certain epoch the MSE of the training set will continue to 
decrease, while the MSE of the validation set will stop decreasing and begin to 
rise, indicating overfitting. The training is stopped at this point and the network with 
the lowest validation set error is used. Finally the network was tested using the test 
set.  In this work a data split of 70%, 15%, 15% of the existing data was used 
between the training, validation and testing sets respectively. 

Network inputs were chosen from the full array of logged hot mill parameters, and 
were selected based on process experience and a consideration of the relevant 
parameters incorporated into analytical treatments on rolling. In the following, the 
terms F1 through F7 refer to the seven stands of the finishing train. 

The intent of this study was to develop fourteen neural networks in total, one each 
per stand for rolling load and motor power respectively. The input parameters 
common to all of the stands are: 

  Weight percentage of each alloying element in the steel grade (Carbon, 
Magnesium, Silicon Niobium, Titanium, and Nitrogen) 
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 Slab width  

 Slab thickness 

 Temperature of the slab entering the rolling mill 

 Temperature of the slab exiting the mill 

Parameters that are not common to all the networks are: 

 The tangential velocity of the slab entering the stand 

 Exit gauge of the stand 

 Fractional reduction of the slab after going through the stand 

Each network takes these values into account for the stand whose power and force 
it is predicting and for all stands preceding it.  

For each finishing train stand the targets for the load applied to the steel strip (tons) 
and power required to drive the rollers (% of rated motor capacity) were taken from 
average data. 

4. Development of the Neural Network Architecture 

Three network paradigms were investigated in this study, utilizing five network 
configurations. The inputs to the networks are stand dependent and detailed in 
table 1. 

1) Neural networks possessing a single hidden layer 
2) Neural networks possessing two hidden layers, in which the first hidden 

layer maintains a constant size of either 2 or 5 neurons. 
3) Neural networks possessing two hidden layers, in which the second layer 

maintains a constant size of either 2 or 5 neurons. 

These architectures were chosen to see if the prediction error could be reduced by 
including an additional hidden layer and how it was affected by varying the number 
of neurons in each of the layers. Ideally a neural network should contain the 
minimum number of degrees of freedom possible, while sufficiently fitting the 
system to be modelled. In order to achieve this, a systematic search routine was 
used to find an approximately optimum architecture with the number of nodes in 
the network’s hidden layers being varied. The number of nodes in the variable 
hidden layer was increased from two to fifty in steps of four. For each network 
structure, training was undertaken 25 times, and the average mean squared error 
in the test set across the 25 trainings was recorded.  

While the Means Square Error (MSE) in the training data continued to fall with 
increasing numbers of hidden nodes, a state of diminishing returns was observed 
with respect to the error in the test set, beyond which any further increase in the 
number of hidden nodes resulted in a negligible reduction in the average MSE. The 
beginning of this plateau was chosen as an ‘optimal’ network configuration, given 
full connectivity. An example of plateauing of the MSE of the test and validation 
data with number of hidden nodes is shown in Figure 4. 
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A methodology has been presented by which a family of MLP neural networks can 
be generated to successfully describe the rolling forces and power requirements in 
the processing of a range of high strength steels. The level of prediction accuracy 
is reasonable given that average input and target values are used in training the 
networks and the variation in the load for a given coil can be of the order of 
hundreds of tons. While neural networks cannot be used to extrapolate, they can 
be used in an interpolative fashion provided measures are taken to ensure good 
generalisation, such as early stopping during training. The methodology presented 
in this paper could be used to guide the design of novel steel grades, which have 
chemistries falling within the range of the input parameters. 

 

Figure 4 MSE of neural network predictions of load for a single hidden layer 
network against number of hidden nodes for a single stand 

Once the optimum range of hidden nodes had been determined via the coarse 
stepping outlined above, the methodology was repeated in the range (n-3) to (n+3), 
where n is the number of hidden nodes in the best performing network during the 
first training round. A pseudo code of the training regime for all the networks 
considered is shown in Figure 5. 
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Figure 5 Neural network training routine 

 

For each of the five network architectures considered, the network having the 
lowest MSE from the 25 training attempts was kept, and plots made of the MSE vs. 
stand number to identify the best architecture for this study (Figures 6 and 7). 

Across all stands the networks utilising a single hidden layer were found to perform 
as well as, or better than, the two hidden layer architectures. Additionally the single 
hidden layer networks had a lower number of total degrees of freedom, considering 
all weights and biases. 
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Figure 6 Percentage error of neural network predictions of power and load 
against measured values for different neural network architectures 

5.  Assessment of the model 

Performance of the models has been assessed using a variation on “Predicted 
Ability of Model” (PAM) [15], where the PAM describes the percentage of 
predictions made falling within a given error range. 

    
                                          

                           
       

Each network generated is run using the input parameters from the measured 
data. The loads and powers predicted are compared with the measured values. 
Using the PAM procedure confidence levels within 5%, 10% and 15% have been 
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assessed. More than 95% of all predictions relating to the test set have been found 
to fall within 15% of the measured values, and typically greater than 90% of all 
predictions within 10% as shown in Figure 7. 

 

Figure 7 Percentage of neural network predictions for load and power within 
confidence levels 

6. Conclusion and Discussion 

The load and power requirements of a hot rolling mill are dependent on MFS of the 
steel being rolled. The MFS as a function of temperature is highly non-linear. In this 
work this non-linear behaviour from actual plant data has been shown.  

Neural networks have been suggested as a tool to predict the load and power 
requirements of the hot rolling mill. Given a good resource of historical plant data it 
has been demonstrated that MLP neural networks can be used to successfully 
describe the rolling forces and power requirements in the processing of a range of 
high strength steels. The level of prediction accuracy is reasonable given that 
average input and target values are used in training the networks and the variation 
in the load for a given coil can be of the order of hundreds of tons. While neural 
networks cannot be used to extrapolate, they can be used in an interpolative 
fashion provided measures are taken to ensure good generalisation, such as early 
stopping during training.  
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In addition we have described a methodology which could be used to generate and 
train suitable neural networks from hot rolling mill data. The generated networks 
can then be used as a guide in the design of novel steel grades, which have 
chemistries falling within the range of the input parameters of the training data.  
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