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Abstract  

In this work the feasibility of pellet size distribution using images captured from the 

operator’s sight glass of the moving pellet bed using a standard digital camera is 

investigated. The pellet size distribution is determined using a bespoke circle 

detection program which is able to fit circles to pellet edges, neural networks are 

used to match predicted distributions to actual distributions and discrete element 

modelling is used to create a large quantity of rendered images with known 

distributions for network training. The results show that the circle detection 

algorithm is able to find a high percentage of pellets in an image and find their 

sizes. Neural networks are then able to use the predicted pellet size distributions to 

give a good prediction of the actual distributions and are able to account for 

segregation effects in the pellet beds. This demonstrates that an online pellet 

sizing scheme is feasible in nickel pellet production.  

 

1. Introduction  

Nickel pellets are produced via the carbonyl process. Small seed pellets are added 

to a reactor and grown to the required size before being removed. The behaviour 

of the reactor is strongly dependent on the size distribution of the pellets within it. 

The behaviour of the reactor can be controlled by adding pellets or purging pellets. 

Currently these requirements are decided on by an operator who looks into the 

pellet reactor through a viewing glass and then decides whether to add or purge 

pellets based on experience. Clearly this is a less than ideal situation as the 

operator is prone to factors such as illness or retirement. It is therefore desirable to 

have a simple non-intrusive method to find the pellet size distribution of the bed at 

any time. This can eventually be related to the seeding/ purging requirements. An 

automated seeding/ purging system will lead to better process control and greater 

efficiency. In this work the feasibility of using photographic images captured from 

the operators sight glass to estimate the pellet size distribution in a pellet bed 

(inside the reactor) is investigated. The recognition of features or shapes in images 

is an important area of research and crosses over many scientific fields [1] [2]. 
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Nickel pellet beds can be several pellets thick. The captured image will only show 

the top of the bed. The pellet distribution of the image will not match the actual 

distribution due to smaller pellets being hidden and segregating to the bottom of 

the bed (see Figure 1). This is demonstrated from experiments using static piles of 

pellets with known distributions. Nickel pellets are almost perfectly spherical in 

shape. In a 2D photograph they appear circular. Therefore an image analysis 

application has been developed to fit circles to the pellets that can be seen in the 

image. Due to segregation of pellets the size distribution in the image will not 

represent the true size distribution of the pellet bed [3]. The distribution will be 

skewed towards larger pellet sizes as the smaller ones can move through gaps in 

the bed and be hidden by the larger ones. Neural networks have been used to fit 

the pellet size distribution detected by the circle detection algorithm from an image 

to the actual distribution within the bed.    

 

 

 

 
Figure 1 Only top layer of pellet bed seen by camera 

 

Neural networks are a computer modelling technique based on the neural pathway 

connections found in the brain. The network can ‘learn’ patterns and trends 

between inputs and outputs within a data set and then be used to predict outputs 

from data sets where the outputs are unknown [4]. A large quantity of data is 

required to ‘train’ the neural. Generating such large data sets from physical 

experiments is prohibitive. Neural networks require a broad range of input and 

output parameters to be able to give a good general prediction. Pellets require 

mixing and sieving to generate a sample of the pellet bed and to find the actual 

size distribution which is time consuming. We have found that a maximum of three 

samples could be made a day, whereas the neural network would require ~10000 
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samples to give reasonable predictions. Therefore a method of generating virtual 

samples using discrete element method DEM was investigated [5].    

 

DEM with known pellet size distributions has been used to investigate whether 

given enough experimental data if neural networks are an appropriate tool to find 

the true pellet size distribution compared with the distribution given by the image 

software. The results of the DEM model can be used to render almost photo-

realistic images of pellet locations. The circle finding algorithms can be used on the 

virtual images and the distributions it predicts can be compared with the known 

distributions.  

 

Using the DEM simulations 10,000 data sets were generated with different pellet 

distributions. From these DEM simulations images of the pellets were rendered 

and the circle detecting application was applied to them. The distributions predicted 

by the circle detecting application were used as the inputs of the networks and the 

actual distributions as the outputs during training.      

2. Image analysis 

 

Several algorithms to detect circles in images have been investigated for this work, 

such as the Circular Hough transform [6], but found to be not suitable for this 

particular application. As such a bespoke image analysis application, written in 

C++ and QT4, has been developed to fit circles to circular edges within images. 

The application is able to fit to partial boundaries and can detect circles where part 

of the edge is hidden. Figure 2 shows an image of a pile of coins with some hidden 

edges. The red circles on the image show where the application has found a circle 

[6]edge.    
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Figure 2 Circle detection algorithm performed on pile of coins with some 

hidden edges 

 

The basic outline of how the application works is as follows: 

 

1. The image is converted to greyscale 

2. A Sobel filter is applied to the image. The Sobel filter approximates the 

gradient of an image. At pellet edges the gradient is high.  

3. Using the gradient information areas of gradient which are below a 

threshold are discarded, leaving only the pellet edges. 

4. Uniformly distributed circle centres are generated across the image. 

5. From these centres circles grow by incrementally is radius approximately 

one pixel at a time. The edges of the circles are then checked to see if any 

portion of them is at the same location as a pellet edge. If they are close 

the circle centre can move to try to get a better match.  

6. The location of matching circle centres and their radius is stored and the 

application moves onto the next circle growth routine.  

7. If there are many matching circles of similar size these are averaged so 

each match is only counted once.  

 

The application returns a circle size distribution from the image. The application 

has been applied to real images of nickel pellets. In general it finds the edges of 

most of the pellets and fits a circle with the correct radius. This is shown in Figure 3   
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Figure 3 Circle detection application on actual pellet images 

3. Discrete element modeling and rendering 

 

Discrete element modelling (DEM) is an explicit numerical technique where the 

physical interactions between particles are modelled over a small time step first 

implemented by Cundall and Strack [7]. In general DEM deals with spherical 

particles and applies various frictions between them to deal with surface roughness 

and irregular shapes. Since nickel pellets are relatively spherical in shape they 

make an ideal case study for DEM work. DEM has previously been shown to give 

good predictions of nickel pellet behaviour [8]. In a DEM simulation particle 

boundaries are allowed to overlap slightly and the forces generated are calculated 

based on the overlap and contact models. Accelerations and velocities can then be 

calculated for the next time step. In this work a Hertz-Mindlin model is used for the 

normal and shear forces [9] [10]. A leap frog integration scheme is used so pellet 

positions and accelerations are calculated at time step tn and velocities at tn+1/2, 

where n is an integer that indicates the current iteration.     

 

In this work simulations of static piles of pellets were generated using the open 

source DEM software YADE [11]. Spheres were generated randomly in a space 

above a container before the simulation started. The simulation was then started 

and the pellets allowed to fall into the container under gravity and settle. The 

distribution of pellets sizes was Gaussian and divided into six bins spanning a 

range of size values from 1mm to 14mm. The pellet distributions were generated 

using a Latin hypercube method which ensures a good spread of data.   
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Using open source rendering software (POVRAY) [12] almost photorealistic virtual 

images can be generated as shown in Figure 4.  

 

 
Figure 4 Image generated from a DEM simulation using POVRAY rendering 

software 

 

The virtual camera can be positioned to view any area of the scene. In order to 

generate a training set of data for neural network analysis 10,000 images with 

different particle distributions were generated from DEM simulations by having the 

camera looking vertically down on the virtual pile of pellets. A typical image to be 

analyzed is shown in Figure 5. Figure 4 shows a typical depth of pellets (note the 

walls confining the pellets are set to be invisible in the rendering software). 

 

 
Figure 5 Virtual image looking down on a static pile of virtual pellets 
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Figure 6 shows the same image as Figure 5 after the circle detection algorithm has 

been applied to it. In general it does a good job of locating the pellets and fitting 

circles of the correct radius to them. The detected pellets are circled in red.  

 

 
Figure 6 Circle finding algorithm performed on a virtual image (pellets are 

circled by the application) 

 

While these simulations are simple with further work DEM simulations should be 

able to show a good representation of actual particle dynamics.   

4. Neural network analysis 

As mentioned in the introduction, the pellet distribution that can be seen from the 

top surface is not the same as true distribution due to segregation effects. The 

segregation will be dependent on the particle size distributions and not predictable. 

Neural networks use weighted nodes with a bias and are capable of mapping 

highly non-linear relationships between input and output parameters [4]. By 

changing the weighting of the nodes and the bias during the training procedure 

neural networks are able to pick out complicated patterns and trends within a data 

set.   

 

In this work the neural network analysis was conducted using the MATLAB neural 

network package [13]. After studying different network architectures the network 

was set up with a single hidden layer with nine nodes and was fully connected. 

There were six different network inputs which correspond to the six pellet size bins. 

The value entered is the ratio of the total number of pellets in each pellet bin (i.e. 

sum of all bins = 1). The size bins (were based on the sieve sizes of the physical 

experiment) and shown in the table below. 

: 

Bin 1 2 3 4 5 6 

Sizes(mm) 1-4 4-6.3 6.3-8 8-10 10-11 11-14 
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The network has six outputs which correspond to actual number of pellets in each 

pellet bin. Tansig functions are used as the transfer function of the nodes in both 

the hidden and output layers. The network architecture is shown in Figure 7. 

 

 
Figure 7 Neural network architecture 

 

For training the input data is divided into randomly three sets, 70% into a training 

set, 15% into a validation set and 15% into a test set. For more information on 

these sets the reader is referred to Haykins [4]. The network is trained using a 

Levenberg-Marquardt back-propagation algorithm [14]. Training is stopped once 

the mean square error of the validation set begins to increase, indicating over 

fitting to the training set.  

 

5. Results   

Figure 8 shows the R
2
 plot of pellet distributions as predicted by the circle detection 

application vs the actual distributions for all data sets. The R
2
 value of 0.080404 

show that the predicted values of the pellet distribution are not matching the actual 

values, as expected due to segregation. Figure 9 shows the R
2
 plot of all data sets 

once the distributions predicted by the circle detection algorithm has been passed 

through the trained neural network. The R
2
 value of 0.9885 shows that the outputs 

of the distributions from the neural network and the actual distributions are well 

correlated.      
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Figure 8 R

2
 of pellet distributions predicted by circle detection algorithm vs 

actual distributions (number of pellets) 

 
Figure 9 R2 of pellet distributions as predicted by neural networks from 

circle detection algorithm inputs vs actual distributions (number of pellets) 

 

 

Figure 10 shows plots of individual samples from the data set showing distribution 

of pellets in each bin. The blue bars show the number predicted by the circle 
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detection algorithm, the green the actual values and the red the values predicted 

by the neural networks with the predicted values as the inputs for the network.  

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Figure 10 Plots from individual images showing predicted circle detection 

app, the actual (target) and actual pellet distributions 

 

From the plots in  

Figure 10 it can be seen that the results given by the neural networks is 

significantly closer to the target values than the results given by the circle detection 

algorithm. For plots a, b and c the ratio of small pellets is higher than the large 

pellets which is not what would be expected due to segregation effects. This may 

be because the pellets are dropped in position and after coming to rest there are 

no further dynamic effects. To truly see the segregation effects more complicated 

DEM simulations involving dynamic movement of the bed must be performed. 

What is clear is that the trained neural network is able to give good estimates of the 
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actual pellet distributions based on the distributions found by the circle detection 

application. There is a relationship between the actual distributions and those 

found by the circle detection application which the neural network is able to find. 

Unfortunately neural networks are a ‘black box’ technique so cannot be used to 

find the statistical relationship.  

6. Conclusions 

In this paper an image analysis technique has been demonstrated to find the 

edges of nickel pellets visible from a static image. The circle detection application 

developed is able to find most pellets in the image, including partially hidden ones 

and give a good estimate of their radius. Neural networks can be used as a method 

to give a good prediction of the actual distributions when compared with those 

predicted by the circle detection algorithm. The DEM modelling requires further 

work to accurately describe the dynamics of a pellet bed, but shows good potential 

and along with rendering techniques the images produced could be used to train 

neural networks in the future. This work suggests that it would be feasible to have 

an automated pellet sizing system on the sight glass of a pellet reactor.       

Future work  

There are several areas of further work which should be   

 Dynamic DEM simulations of pellets moving as they would in the reactor 

so segregation effects can be seen clearly. 

 Neural networks with other inputs such as height of the bed (in this 

simulation the height so of the static piles are approximately the same). 

The height of the bed could have further impact on the segregation, i.e. a 

deeper bed will result in greater segregation.  
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