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Abstract A robust production is an important goal in sheet metal forming in order to make 

the process outcome insensitive to variations in input and process conditions. This would 

guarantee a minimum number of defects and reduced press downtime. However, for com-

plex parts it is difficult to achieve robust settings. Parts without defects can only be real-

ized if the process parameters are adapted to the changed conditions. 

 

In this paper, an approach for adaptive process control is presented, taking the uncertain-

ties and tolerances of the process and material into consideration. The proposed control 

approach combines feedback and feed-forward control strategies. The most significant 

improvement is to incorporate feed-forward control with knowledge about the system (also 

known as predictive models). To create these models high fidelity numerical models have 

been created.  Furthermore, a procedure is presented to update the coefficients of the 

predictive model to adapt it to the actual process state. 

 

To evaluate the control strategy prior to its implementation, a testing environment has 

been developed. Different test scenarios for common states of the process have been 

generated to evaluate the improvement of the proposed control strategy. 

 

1. Introduction 

 

Today, the procedure to get a robust process in sheet metal forming is to layout 

the process in the planning phase as stable as possible. However in a production 

line, the tools will for instance show wear effects and the quality of the process 

will show a trend towards the upper or the lower tolerance limit. Not only tool 

wear, but any change in the influencing parameters on the process will result in a 

deviation in the quality of the product. These deviations require an operator, to 

manually adjust the process settings or the tools to avoid producing outside spec-

ification limits. These manual control loops are typically slow and have to be re-

peated over and over again. 
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Therefore, the goal is to get constant output parameters, subject to variability in 

the input parameters like sheet thickness and the yield stress of the material. This 

input scatter is not controllable, so the process has to be continuously adapted. A 

short summary about control strategies for forming processes is summarized in 

the following section. 

 

Hora et al 2011 [1] present a proposal for a Zero Defect Production Control. The 

idea is based on a three component approach. The first component is based on 

the incorporation of process knowledge within the controller strategy by using a 

Process-Integrated-Virtual-Control to map the system behavior and then building 

up metamodels that capture the physics of the process. Applying a FEM sensitivi-

ty analysis on the process, it is possible to extract the information needed to build 

up a virtual process control. The second component is the use of an in-line mate-

rial monitoring system in a non-destructive way to determine the non-constancy 

of measureable process parameters [5], [6]. The third component consists of an 

in-line control of process parameters directly on the tools. This creates the possi-

bility to change the process settings automatically and allows the implementation 

of a closed loop regulation. 

 

Müller-Duysing 1992 [3] focused on the adaptive control of a three point bending 

process. Based on some principal possibilities for the correction, an adaptive 

control procedure has been developed and experimentally validated. Ruzovic 

1999 [4] has developed an adaptive control system, which is able to react on 

changing process conditions to ensure the quality of the produced parts. The 

control concept can be divided in two parts, the diagnostic of the process state 

and the correction. Annen 2012 [6] is using the robustness analysis to realize a 

process control. Therefore, stochastic simulations are conducted and process 

windows, which signify a capable process, are determined by simulations or ex-

periments. The idea is to control the process on the basis of these allowed pro-

cess windows. 

 

The general goal is to develop an adaptive control system for a two-step bending 

process. This includes the following tasks: Analyzing and modeling of the pro-

cess, definition of a measurement concept, development of a control strategy and 

check this concept virtually. Finally the approach can be tested on the real pro-

cess [4]. In this paper, the modeling of the process and the control strategy is 

addressed in section 2 and 3. Section 4 shows the simulation of the entire pro-

cess applying the developed control strategy. 
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2. Modeling of the bending process 

 

In this section the modeling of the bending process will be addressed. Therefore, 

the investigation of the process is done in 2 parts: The model of the process is 

built and the material properties are tested and modeled. Explanations about the 

whole demonstrator process can be found in [2]. 

 

For this study only a sub-part of the full demonstrator part is modeled. This sub-

part includes the bending flap and its neighborhood. The size of the neighbor-

hood has been chosen in order to apply reliable boundary conditions. The simula-

tion is divided in 2 steps like in the process. In the first step, over bending to an 

angle of 50° takes place. The punch force as well as the design of the punch and 

the die geometry determines the final form of the bended part. Spring back oc-

curs after the bending process for materials with elastic deformation. After the 

pre-bending process, the flap is bended back. The punch will move upward and 

will change the angle of the flap to a lower value. 

 

Spring back has a major influence on the accuracy of the bended part. Given the 

fact that especially the spring back behavior is highly sensitive to material proper-

ties, it is clear that a good material model is necessary for a sufficiently accurate 

virtual description of the process. 

 

The tested material is AISI420, a martensitic stainless steel in a stable ferritic 

state. The material behavior has been studied using advanced experimental test-

ing devices. The plastic material behavior under different stress states is de-

scribed using tensile tests in three directions and a hydraulic bulge test. Within 

the demonstrator process, the work piece undergoes also one cycle of bending-

unbending. Therefore, it is important that phenomena, which occur during this 

deformation cycle, are also described. Cyclic shearing tests have been conduct-

Pre-bending Back-bending 

  

Figure 1: FE-model of the two step bending process 
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ed by using a biaxial testing device. Although the sheet thickness amounts only 

0.3 mm, cyclic tests could be performed without showing wrinkling effects. The 

identified material properties are summarized in Table 1. 

 

Table 1: Identified material properties for the stainless steel AISI 420 

Material σ0[MPa] σ45[MPa] σ90[MPa] σb[MPa] r0 r45 r90 

AISI420 362  368  368  384  1.23 1.17 1.53 

 

An anisotropic yield function in combination with a kinematic hardening model is 

used to describe the observed material behavior. As yield condition, the yield 

function Yld91 is chosen. The yield surface can be expressed as follows: 

 ̅  
 

 
[|     |

  |     |
  |     |

 ] 

where Si=1,2,3 are the principal values of the S matrix which is depending on the 

Cauchy stress. 

 

To describe the hardening behavior, a combined hardening model is used. This 

formulation assumes that the hardening is divided in two parts, the isotropic part 

and the kinematic part. The fraction fh between both is a material parameter. The 

Prager linear kinematic hardening law is used in combination with the Hockett-

Sherby law. The Hockett-Sherby equation is defined as follows: 

  (  ̅)    (   ) 
(   ̅ )

 

 

where A, B, m and n are material parameters defining the slope of the stress-

strain curve. 

 

The calibration results and the mechanical responses of the model compared to 

the experimental data are shown in Table 2 and Figure 2. The yield locus is cali-

brated to the stress values, therefore the results in term of r-values are not suffi-

cient (Figure 2c). But the trend of the r-value regarding the rolling direction is the 

same as the one shown by the experimental results. The hardening behavior is in 

good agreement with the experimental results (Figure 2d). The cyclic behavior is 

shown in Figure 2e. 
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Table 2: Identified parameters of the material model 

Isotropic hardening: Hockett-Sherby Fraction of kin. hardening 

A [MPa] B [MPa] n [-]  c[-]    f [-] 

920  346  0.56  3.16    0.07 

 

Anisotropic plasticity: Barlat91 

m [-]  C1   C2   C3   C6 

6  0.926  0.959  1.040  0.997 

 

 

 

  

a) b) c) 

   
d) e) 

  
Figure 2:  AISI 420 – Barlat 91 yield locus and hardening law calibration – a) yield 

locus b) Normalized yield stress c) r values d) uniaxial tension stress / strain 

curve e) cyclic shearing stress / strain curve 

 

Adaptive process control strategy for a two-step bending process
Franz Dallinger, Jos Havinga, Emile Roux, Roberto d'Ippolito, Pavel Hora, Ton van den Boogaard

622



3. Control strategy 

 

In this section the control strategy is explained. The basic task of the control sys-

tem is to adapt the process on changing conditions to ensure the quality of the 

products. To realize an algorithm, which conducts the adaption automatically, the 

relation between measurement and control parameters must be known. In a very 

simplified manner, the question is to find a function, which defines the dependen-

cies of the measurement and the control parameters. 

 

The control approach will be applied on a two-step bending process. In the first 

step, the over bending to an angle of 50° takes place. In the second bending, the 

flap is bended back. Measured parameters are the sheet thickness, the bending 

force during the first bending and the final angle after the process. To control the 

final angle, the punch displacement in the back-bending step can be set. The 

control algorithm calculates the amount of correction of the punch displacement 

   by using all available measurement data   . During the process, the coeffi-

cients    in the control algorithm will be continuously updated. The control con-

cept is summarized in Figure 3. 

 

 

The control approach combines feedback and feed forward control strategies. 

The most common method of feedback process control is the proportional-

integral-derivative (PID) controller as described by N. Minorsky and it is widely 

used in industrial applications [8]. This feedback consists of a Proportional, an 

Integrative and a Derivative part concerning the error between the output and a 

reference value of the controlled system. In absence of knowledge of the underly-

 

Figure 3: Control concept of the two step bending process 
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ing process, a PID controller has historically been considered to be the best con-

troller. The fundamental drawback with PID control is that it is a feedback system, 

with constant parameters, and no direct knowledge of the process, and thus 

overall performance is reactive and a compromise. 

 

The most significant improvement is to incorporate feed-forward control with 

knowledge about the system. To estimate the control parameter in advance, indi-

rect “online” measurements, like the trend of the force curve during the process, 

can be used. These approaches are known as “predictive model” and represent a 

mathematical replication of the process. The complete concept is shown in Figure 

4. 

 

Figure 4: Control approach combining feedback and feed-forward control strate-

gies 

 

For the analytical description of the predictive models, different methods can be 

used. However, the construction of reliable and accurate models is not a trivial 

task. Based on accurate simulation models, a design of experiment is defined to 

generate a database to fit the models. A multiple linear regression method is 

used in this approach to define the relation between measurement and control 

parameters. In this way, it´s possible to describe the dependency of certain 

measured values on the control parameter quantitatively [4]. The multiple regres-

sion describes the relationship between the variable   and the predictor variables 

  with the following basic model: 

                           ∑     

   

   

 

A very important part of the control concept is the adaption of the predictive mod-

el on the current process state. The coefficients of the function can be optimized 

by using all available measurement data. The measured process data are the 

final angle   , the punch displacement  , the thickness   and  the force  . Re-

gression techniques are applied to the whole amount of saved measurement data 

to update the coefficients of the predictive model at specific moments in time. 
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4. Proof of concept 
 

To test the control strategy, models of the process steps have been generated, 

with which the behavior of the system can be replicated. Subsequently the control 

approach can be simulated and validated together with a model of the controlled 

system. This enables the design and test of different control approaches. 

 

The specific characteristics of the forming process have to be considered in the 

design and development of the control system. Primarily, it’s the slowness with 

which the forming process reacts on changing conditions. This means that abrupt 

changes of the process conditions mostly take place, when a new coil of material 

is used in the production. Otherwise only smoothly varying changes can be ex-

pected [4]. In Figure 5, some scenarios for common states of the process and 

material parameters are summarized. 

Top conditions show relatively constant values for the sheet thickness and yield 

stress. Normally, these parameters show an increasing or decreasing trend. If a 

coil change takes place, an abrupt change of the parameters occurs. The tem-

perature, which mostly influences the friction conditions and the yield stress of 
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Figure 5: Scenarios    
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the material, is assumed to increase at the beginning, suddenly decreases due to 

a break of the production and increase again. 

 

A result of the proposed control strategy, which combines feedback and feed-

forward control, is shown in Figure 6. The big improvement in the achieved accu-

racy of the bended part can be seen compared with standard feedback control. 

However, the used input data for this test shows a lot of deviations from product 

to product which leads to the relatively bad results of the feedback control. 

 

Additional attention has to be paid on the topic of the transition phase and size of 

measurement dataset for the update of the coefficients. As soon as enough data 

is available, the coefficients can be updated to improve the model. It is necessary 

to have a smooth transition from old to corrected parameters to avoid instabilities 

of the control approach. 

 

For the amount of used measurement data, different approaches are possible. 

The parameters of the predictive model can be continuously updated using a 

moving window approach when actual measurement data is available [9]. Speed 

of adaption of the model (requiring smaller size) and avoiding response to noisy 

data (requiring larger size) have an impact on the size of this window. 

 

  

 

Figure 6: Simulated results for the final bending angle using different controllers 

Transition 

phase 

Continious adaption 

of the coefficients 
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5. Conclusions and outlook 

 

It still has to be clarified how the complexity of the predictive model and more 

noise on the measurement data influence the results. Till now, only linear models 

for the process control are used. Also the chosen approach of combining the 

output of the predictive model and the conventional controller has to be validated. 

Other approaches exist, which have to be tested. 

 

Furthermore, the appropriate algorithm has to be programmed in a PLC. For the 

initial test of the control approach the models of the process steps will be used. 

After that the control program can be used in the machine. 
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