
Parallel computing for supporting complex energy
simulation and optimization

Ioan Petri

1
, Haijiang Li

1
, Yacine Rezgui

1
, Chunfeng Yang

1,2
, Bejay Jayan

1
 and

Baris Yuce
1

1
School of Engineering, Cardiff University, UK

BRE Institute of Sustainable Engineering,
Cardiff University, UK

2
State Key Laboratory of Structural Analysis for Industrial Equipments

Department of Engineering Mechanics, Faculty of Vehicle Engineering and
Mechanics Dalian University of Technology, Dalian, China. 116024

Abstract With the emergence of the new major challenge on communities regarding global
warming, significant researching efforts have been recently directed towards simulation
based building energy optimisation with the overall objective of reducing energy
consumption. Energy simulation and optimisation identifies a class of applications that
demands high performance processing power in order to be realised within a feasible time-
frame. The problem becomes increasingly complex when addressing energy simulation and
optimisation in large scale buildings such as sport facilities where the generation of optimal
set points can be timing inefficient. Parallel processing on computing systems has enabled a
wider range of complex simulations to be undertaken and are particularly useful due to their
capability to handle and analyse massive amounts of data at high speed. In particular, such
systems can provide the mechanisms for reducing the time for running complex simulations
and optimising the various aspects within a problem. In this paper we present how parallel
computing systems can be efficiently used for running and deploying EnergyPlus based
simulations and optimisations in order to fulfil a number of energy related objectives. We
adopt a comparison based approach by evaluating the performances of our system over a
number of relevant scenarios.

Keywords: High Performance Computing, Cluster Computing, EnergyPlus,
Simulation, Optimisation

1. Introduction

The adoption of computing systems in the engineering community is at early
stages. In the context of building energy simulation based optimisation there are a
number of proposed computing solutions that have been developed, enhanced and
are in use throughout the building energy community [1], [2], [3]. Scientists tend to
use standard computational methods for solving the increasing complexity of the
various energy problems. Lately, as with the new major challenge on communities
regarding global warming, significant researching efforts have been directed
towards simulation based building energy optimisation with the overall objective of
reducing energy consumption.
Parallel computing provides the means for running complex processes
simultaneously by dividing large chunks of problems into smaller ones. With the
multiple classes residing such as cluster computing and grid computing, parallel
computing seeks to divide tasks and deploy them on existing forms of computing
infrastructures. Whereas parallel computing on cluster based systems is widely

KES Transactions on Sustainable Design and Manufacturing I
Sustainable Design and Manufacturing 2014 : pp.386-397 : Paper sdm14-033

InImpact: The Journal of Innovation Impact | ISSN 2051-6002 | http://www.inimpact.org
Copyright © 2014 Future Technology Press and the authors

386

explored and used, parallel computation on High Throughput Computing (HTC)
infrastructures such as Condor systems has not been enterely explored. This is
mainly because High Throughput Computing systems are focusing on
computational tasks which can be processed over a long period of time and imply
additional work for schedulling and monitoring. However, in the engineering
domain the diversity of tasks and computational problems can be highly increased.
Deciding on which computational infrastructure should be used to maximise
performances and scalability can be difficult to achieve especially when the
problems have various degrees of complexity [4]. On the other hand, High
Performance Computing (HPC) based systems work with several nodes, up to
thousands, dedicated for groups of users allowing parallel tasks to be executed.
Whereas HPC systems save a lot of time for large tasks in terms of the number of
floating point operations per second compared to personal computers or small
servers, the nodes in HTC systems are regular machines such as desktop
computers and usually they do not support parallel algorithms[1].
Thus, HTC systems and HPC systems can provide a number of advantages when
used for the right type of problems. However, the decision on the type of
infrastructure to be chosen can be difficult to determine especially when the
problem to be solved requires the execution of algorithms over a large number of
data sets. An example for such a problem is the energy optimisation context where
the input data sets can be continuously changing and the algorithm running
necessitates sensitivity analysis for each data set result. Nevertheless, a key
scenario is the optimisation with genetic algorithms (GA) using principles of natural
evolution. In GA optimisation, the process deals with a randomly generated
population of individual solutions where good solutions are selected and mixed by
recombination to form new population of better solutions. For such an optimisation
type, HPC systems are suitable only from the perspective of the associated
process duration (the run time is short and the number of runs is huge). On the
other end of the spectrum, HTC systems are suitable from the perspective of
algorithm complexity where parallelism is necessary, the run time is large and the
number of complete runs is relatively short so the correspondent mechanism of
queue waiting becomes extremely practical [2].
We tackle the problem of energy optimisation with a hybrid approach by developing
an algorithm compatible with the two computing environments -- HTC and HPC
systems. More specifically we have created an infrastructure where HTCondor [6]
and Torque [5] can run on different types of Energy Plus optimisation tasks. In this
paper we propose a framework for deploying Energy Plus [21] based simulation
optimisation and enable users to compute tasks within a HTC or HPC based
infrastructure. As time and load are extremely important factors especially when
dealing with real-time energy simulation and optimisation, we present and test our
algorithm in different scenarios. We believe that our solution is applicable not only
for complex energy optimisation problems but can be easily extended to other
types of problems. The reminder of the paper is as follows: Section 2 and Section 3
explore related models and present the approach we follow in this paper; Section 5
presents the methodology followed by a detailed use case in Section 6. Section 7
presents the results. We present the conclusions in Section 8.

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

387

2. Related work

In this section we explore several related approaches in the field of energy
simulation and optimisation from two perspectives: (i) computing based
architectures and (ii) optimisation based solutions.

2.1 Computer Architectures

The architectures of parallel machines have emerged over the time from computer
architectures with Single-Instruction-Multiple-Data (SIMD) to Multiple-Instruction-
Multiple-Data (MIMD) models. The SIMD has appeared as a simple parallel
computer model with one instruction unit and several processing units, while the
MIMD processors have the ability to execute their tasks in the memory. Shared-
memory machines (SIMD) are configured to enable the processors to address the
whole memory space and the communication between the tasks is done through
read and writes operations on the shared memory. The distributed memory
machines (MIMD) have their memory physically distributed among the processors.
Each processor can only address its own memory, and communication among the
processes executed on different processors is performed by messages passed
through the communication network [9].
On the other hand, the SMP machines provide a new mechanism for connection
via the fast local networks (Gigabit Ethernet) adding fault-tolerance and excellent
cost/performance ratios. This has led to the emergence of clusters of computers
(based on Linux OS, Myrinet, off-the-shelf PCs) which is a current trend in parallel
computing as the fastest and most powerful computers according to various
studies [16]. Parallel computers mainly use a type of UNIX4 operating system with
an X-Window based interface. On the market, there are also other operating
systems than the UNIX/Linux mainstream, Microsoft Windows 2003 Server, Apple
Mac OS, Open VMS, but they do not compete successfully in High-Performance
Computing due to various reasons (price, hardware support, scalability,
maintenance) [15].

2.2. Optimization solutions

Genetic algorithms (GA) are based on principles from natural evolution and can
generate an optimal solution from a population of candidate solutions. Generally,
GAs begin with a randomly generated population of individual solutions where
solutions are selected and mixed by recombination to form new population of better
solutions. Genetic algorithms do not guarantee optimal solutions, but they can
produce high quality solutions in a reasonable amount time [7]. A disadvantage of
GAs is that they require a large number of, sometimes thousands of, evaluations to
find adequate solutions for complex optimisation problems [8].
A number of different researching attempts have been developed around generic
algorithms and their efficiency in solving optimisation problems. Sefrioui et al. [11]
developed a Hierarchical Genetic Algorithms (HGAs) with multi-layered hierarchical
topology and multiple models for optimisation problems. The result was composed
by a mix of a simple and complex model with a significant improvement in regards
to the processing time when compared to complex models. For the problem of

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

388

synchronism for migration of various parallel distributed GAs, Alba and Troya
(2001) [10] extended the existing results to structured-population GAs and
demonstrated linear and even super-linear speedup when run in a cluster of
workstations. From the application perspective, Jelasity et al. [12] proposed a tool
for automatic learning of algorithm components based on distributed evolutionary
algorithms for problem classes. The tool was based on a multi-objective conceptual
framework implemented in Java and capable of running distributed experiments on
the Internet. Arenas at al. (2002) [13] developed a framework for the automatic
distribution of evolutionary algorithm processing through a virtual machine built
from a large number of individual computers on the Internet. The benefits of
parallel genetic algorithms have been also tested by comparison with a traditional
non-parallel GA alongside an optimisation problem [14]. It was identified that
parallel GA provide gains not only in terms of computational time, but also in the
optimisation outcome. Thus, parallel algorithms can be reliable methods for
reducing calculation time of simulation-based GA optimisation. In this paper we
develop a parallel genetic algorithm based on NSGA-II compatible with two
computing frameworks -- HTCondor and Torque.

3. Computing systems and applications

In our study we use two environments such as HTCondor and Torque for deploying
our algorithm.
HTCondor is an open-source high throughput computing workload management
software framework for a cluster of distributed computer resources. As most of
personal computers have more processing power and storage space than the
supercomputer of last century is has become possible to build a network of such
computers. HTCondor is widely used to exploit the distributed computers to their
full potential for computational intensive tasks, such as simulation calculations [3].
The mechanism of task scheduling in HTCondor is different to the mechanism of
related systems. In HTCondor system, after the submission, the jobs run until a
user tries to use the computer interrupting the processed job and then restarting it
on another available machine. HTCondor can be used to manage a cluster of
dedicated compute nodes (our case) greatly enhancing the completion time and
balancing the load. In our scenario, the machines are part of a dedicated cluster
and every task submitted to HTCondor will be processed without interruption.
In Torque system a task contains both the details of the processing to be carried
out (name and version of the application, input and output, etc.) and directives for
the computer resources needed (number of CPUs, amount of memory). Tasks are
run as batch jobs, i.e. in an unattended manner by the user submitting a job to the
execution queue. Tasks are managed by a task scheduler, a piece of software
which is in charge of allocating the computer resources requested for the task,
running the task and reporting back to the user the outcome of the execution.
Running a Torque task involves at the minimum the following steps: (i) preparing a
submission script and (ii) submitting the task to execution [5].
From the energy simulation perspective, EnergyPlus has been validated as an
efficacious tool for running energy simulations [19], [20]. EnergyPlus is an energy

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

389

Figure 1 Cluster infrastructure

analysis and thermal load simulation tool that can calculate the heating and cooling
loads necessary to maintain thermal control setpoints, conditions throughout an
secondary HVAC system and coil loads, and the energy consumption of primary
plant equipment. In EnergyPlus, inputs and outputs are handled as ASCII (text)
files as follows:

- the Input Data Dictionary (IDD) that describes the types (classes) of nput
objects and the data associated with each object;
- the Input Data File (IDF) that contains all the data for a particular
simulation.
- the Weather Data File (EPW) that contains all the data for exterior climate
of a building.

From a computational perspective EnergyPlus necessitates reliable computational
infrastructure to run. When dealing with small EnergyPlus models (with small
umber of surfaces, zones, and systems), which do not require large amounts of
computer memory, computers with faster CPUs are more effective in reducing run
time than computers with more memory. For large models, more and faster
computer memory including RAM and internal cache may be more effective in
reducing run time. The amount of computer memory only helps to a certain point
as if the simulation produces multiple reports, the hard drive access speed also
becomes important in reducing the run time.

5. Methodology

We consider a number of transactions within the set T = {t1, t2, t3, ..., tn} that can take
place within the system, where each transaction ti maps a complex optimisation
problem (see figure 2). Each transaction ti can have an objective (single objective)
obi or a set of objectives (multi-objective) [ob1, ob2, …, obj]. Each transaction ti is
composed by a set of tasks ti = {ts1, ts2, ...,tsm} which generate a result ri = {ts1 +

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

390

ts2+,..., +tsp}, where n is determined by the complexity of the optimisation problem
to be resolved. Each task tsi is mapped as an EnergyPlus simulation.

Figure 2 Algorithm deployment

The result ri is determined in accordance with the objectives obj of the transaction.
The tasks associated with one transaction ti are run for a number of rounds
noOfRounds until the result of the round satisfy the objectives. The tasks of a new
generated round r’i = {ts1’ + ts2’+, ..., tsp’} are based on the results obtained from
round ri where tsi’ = f[r(tsi)], tsi’ is a function of result r(tsi). The termination criterion of
each transaction resides on the following two conditions:

(i) Maximum number of rounds (MaxNoOfRounds) -- number of rounds
after which a transaction finishes

(ii) Similarity of results (ri ~ ri+1) -- the level of similarity between results
in consecutive rounds; if two consecutive rounds are very similar
the transaction processing will stop.

 In our system each ti has a set of associated parameters such as:
- Functional parameters: [taskId; objective]
- Non-functional parameters: [time; load; CPU usage]

Each transaction ti has a number of tasks and a corresponding computation time ptj
calculated as ptj = noOfRounds * noOfTasks, where noOfRounds determines the
number of rounds of transaction ti and noOfTasks determines the number of tasks
composing the transaction.
The number of tasks to be run within one transaction is dependent on the objective
and the variables of the simulation model. At each stage the simulation model is
updated by refining the input values of current simulation round with previous
simulation round results until the optimisation objective is achieved (see Algorithm
1). Our framework is based on a cluster system composed by a number of servers
S = {s1, s2, s3,…,sm} which can support a number of transactions. Each si ∈S is a
cluster server containing 12 CPU cores such as si = {c1, c2, c3,…,cp}, p=12. The
cluster is monitored by a scalable distributed system called Ganglia [17] which

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

391

helps us in giving a graphic representation of the various metrics we report in
Section 6.

Algorithm 1: Parallel computation algorithm
1: Initialise parameters of the algorithm;
2: while Transaction iteration is not completed do
3: Generate a new ti;
4: for all tsi := 1 to tsn; do
5: Get variables of the tsi;
6: Create a working folder for the computing task tsi;
7: Clear the computing transaction working folders;
8: Create input data file for task tsi working folder;
9: Copy necessary files into the task tsi working folder;
10: end for
11: Submit transaction ti
12: Waiting for the transaction ti to finish;
13: for all tsi := 1 to tsn do
14: Parse task tsi output files;
15: Set objective values and constraint values;
16: end for
17: if Meet transaction terminate condition then
18: Transaction iteration complete;
19: end if
20: end while

Within the system, servers are organised in two parallel based environments such
as Torque and HTCondor, where two types of transactions can take place:

(i) Torque based transactions -- containing tasks to be completed within the
Torque based system - identified as tj = {ts1 + ts2+, …,tsn}. Each tsi is a
task representing an EnergyPlus simulation process, whereas tj is a
transaction representing an optimisation process composed by many
tsi tasks.

(ii) HTCondor based transactions -- containing tasks to be completed within
the HTCondor based system - identified as tk = {ts1 + ts2+ …+tsm}.

6. Optimisation Use Case

We present a use case from the SportE

21
 project pilot called FIDIA, a public sport

building facility, located in Rome, Italy. The building we have used in the pilot study
has wooden external walls of 9cm and a wooden external roof of 9cm. The floor is
made of concrete. The windows are single glass with a thermal transmittance of
5:7W=m2K and a solar gain of 0.7. The geometry of the building is composed of an
Gable roof with Hmin = 3m and Hmax = 6m with window surfaces of about 70 m2.
In this use case energy consumption E is considered as the main objective of the
optimisation model composed by four different sub-objectives such as: the energy
of heating Eh, the energy of cooling Ec, the energy consumed by fans Ef , and the
energy consumption of generators Eg.

1 SportE

2
 is a research project co-financed by the European Commission FP7 programme under the

domain of Information Communication Technologies and Energy Efficient Buildings.

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

392

 E = Eh + Ec + Ef + Eg
The optimisation model is shown as following:

Objective : min Obj = Eh + Ec + Ef + Eg

Design variables : xi; i = 1- 6;
The optimisation model, composed by four objectives is based on Energy Plus
simulations with a number of six design variables. These variables are updated
after each round of simulation until the ending conditions of the optimisation
process are triggered.

Objective :
minimize E = Eh + Ec + Ef + Eg
Design variables :
x1 ∈ [10, 1000]
x2 ∈ [10, 1000]
x3 ∈ {0:002, 0:003, 0:004, 0:005, 0:006, 0:008, 0:01, 0:012, 0:015, 0:018}
x4 ∈ {0:002, 0:003, 0:004, 0:005, 0:006, 0:008, 0:01, 0:012, 0:015, 0:018}
x5 ∈ [0:0017, 0:0036]
x6 ∈ [0:012, 0:16]

The sports facility is equipped with sensors and actuators for monitoring, control
and optimisation of the facility. The building has metering capability to determine
consumption of electricity, gas, biomass, water and thermal energy. This data can
be accessed through a specialist interface and recorded for analysis

7. Experiments
We deploy a number of transactions with an associated objective obj on the
infrastructure with dedicated cluster machines. In our system there are 8 dedicated
cluster machines each having 12 CPU cores and 3201 MHz CPU speed.
We use Ganglia to measure various parameters such as: completion time, load,
average utilisation, CPUs usage.

Experiment 1: Load and time based comparison - This experiment presents the
load generated by the algorithm within the two infrastructures. From Figure 3 is
observed how the load(axis o-y) and time(axis o-x) affected with the transaction
evolves. Whereas for the HTCondor based execution the load is higher than for
Torque, the execution time associated with the HTCondor execution is shorter that
for Torque system. This is determined by the scheduling policies of the two
infrastructures. While HTCondor distributes the task on all the CPU Cores, the
Torque schedules tasks according to a time frame.

Figure 3 Load and time for multiple transactions

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

393

Experiment 2: Computation load and time - In this experiment we compute the
algorithm on the HTCondor and Torque infrastructure and measure the time
parameter.

Figure 4 Computation load and time in cluster

This experiment shows the performances of the two infrastructures when deploying
transactions with similar complexity degree(same number of objectives). This
experiment provides a general overview on the load(axis o-y) and the computation
time(axis o-x) associated with a transaction. Figure 4 demonstrates that on
HTCondor the load is signiffcantly higher comparing to Torque. In what concerns
the overall computation time is observed that the completion of a transaction takes
longer on Torque.

Figure 5 Comparing hosts in load and CPU

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

394

Experiment 3: Host based comparison - In this experiment we compare the load
and CPU parameters of the two execution systems. By using a similar degree of
complexity for both cases is observed that CPU load has different trajectories
according to the execution environment used to deploy the transaction. Whereas
the first two experiments provide an evaluation from the perspective of load(axis o-
y) and time affected with a transaction(axis o-x), in this experiment we present a
detailed comparison of the indivual host machines.
From the comparison illustrated by Figure 5 it can be concluded that HTCondor
system can provide a higher effciency in what concerns the load and computation
time. On the other hand, Torque system has the advantage of a better scheduling
mechanism, signiffcantly reducing the computation load but with an additional
delay concerning transaction completion.

Experiment 4: Comparison of single algorithm versus parallel algorithm - This
experiment compares single CPU process with parallel process on HTCondor
emphasising the capability of the parallel algorithm to use all the CPU cores
comparing to the case when a transaction is deployed as a regular process with a
single process execution. This experiment presents the load(axis o-y) and
execution time(axis o-x) within two different experimental setups: (i) single CPU
process and (ii) parallel algorithm.

Figure 6 Comparing single vs parallel algorithm

From Figure 6 is observed that the execution time of the optimisation process
takes longer when deploying the algorithm on a single CPU process. The interval
of computation time is signiffcantly reduced when deploying the algorithm to a
parallel process. It can be observed that a single process takes around 4 days to
complete while the parallel process reduces the execution time of the optimisation
to couple of hours.

8. Conclusions

This paper presents a parallel framework for computing complex simulation based
optimisation problems. As existing today, the computing capabilities can solve
large-scale, complex engineering problems in a significantly shorter time compared
with single-processor machines. As stated, energy simulation and optimisation
identifies a class of applications demanding high performance processing power
in order to be realised within a feasible time-frame.
We present our parallel algorithm by measuring the performances in a number of
different scenarios. We test the performances of the algorithm both on a HTCondor
system and Torque system and evaluate the impact of the load it produces and the
computation time. Is observed that our algorithm performs better on a HTCondor

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

395

environment due to a key capability of using the available cores. When testing the
algorithm on a Torque environment is observed that the load is lower but
computation time increases comparing to HTCondor. We demonstrate that our
algorithm can represent a realisable solution not only for complex energy
optimisation problems but can be easily extended to other types of problems.
When evaluating the single process and parallel process case of the algorithm is
observed that our parallel algorithm reduces the computation time significantly.
Althrough in the evaluated case we only use continuous variables and discrete
optimisation, our system can cope with diffferent types of variables and
optimisations. The advantages of our solution rely not only on the performances of
the algorithm but also on the unique combination of different submission systems
such as HTCondor and Torque. By combining the two environments within a single
solution we facilitate an optimum between the high execution time and robust
scheduling.

Acknowledgements: The research presented in this work is supported by EU FP7
SportE2 project, ICT for Energy Efficiency in European Sport Facilities.

References

[1] Rezvan, A.T., Gharneh, N.S., and Gharehpetian, G., Optimization of distributed generation

capacities in buildings under uncertainty in load demand. Energy and Buildings, 57 (0), pp. 58 -64.
2013

[2] Magnier, L. and Haghighat, F., Multiobjective optimization of building design using TRNSYS
simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45 (3),
739-746, 2010.

[3] Hong, T., Chou, S., and Bong, T., Building simulation: an overview of developments and
information sources. Building and Environment, 35 (4), 347 -361, 2000.

[4] Raicu, I.; Foster, I.T.; Yong Zhao, "Many-task computing for grids and supercomputers," Many-
Task Computing on Grids and Supercomputers, 2008. MTAGS, pp.1-17 Nov. 2008

[5] Jim Basney and Miron Livny, "Managing Network Resources in Condor", Proceedings of the Ninth
IEEE Symposium on High Performance Distributed Computing (HPDC9), Pittsburgh, Pennsylvania,
August 2000, pp 298-299.

[6] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Condor and the Grid", in Fran Berman,
Anthony J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[7] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed Computing in Practice: The
Condor Experience" Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

[8] TORQUE Resource Manager, http://www.clusterresources.com/products/torque-resource-
manager.php, Last accessed: June 2013.

[9] High Throughput Computing, http://research.cs.wisc.edu/htcondor/, Last accessed: June 2013.
[10] A. Taghipour Rezvana, N. Shams Gharneha, G.B. Gharehpetianb. Optimization of distributed

generation capacities in buildings under uncertainty in load demand. Energy and Buildings 57
(2013) pp.58-64.

[11] Laurent Magnier, Fariborz Haghighat. Multiobjective optimization of building design using TRNSYS
simulations, gentic algorithm, and Artical Neural Network. Building and Environment 45 739 - 746
(2010)

[12] P. Tvrdik. Parallel systems and algorithms. Czech Technical Publishing House, 167,1994.
[13] E. Alba, J. M. Troya. Analyzing synchronous and asynchronous parallel distributed genetic

algorithms. Generation Computer Systems, 17(4):451-465, 2001.
[14] M. Sefrioui, J. Periaux. A Hierarchical Genetic Algorithm Using Multiple Models for Optimization.

Parallel Problem Solving from Nature VI., Paris, France, 879-888, 2000.
[15] M. Jelasity, M. Preub, A. Eiben. Operator Learning for a Problem Class in a

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

396

[16] Distributed Peer-to-Peer Environment. Parallel Problem Solving from Nature VII, Granada, Spain,
172-183, 2002.

[17] M. Arenas, P. Collet, A. Eiben, M. Jelasity, J. Merelo, B. Paechter, M. Preub, M. Schoenauer. A
Framework for Distributed Evolutionary Algorithms. Parallel Problem Solving from Nature VII,
Granada, Spain, 665-675, 2002.

[18] C. Pereira, C. Lapa. Coarse-grained parallel genetic algorithm applied to a nuclear reactor core
design optimization problem. Annals of Nuclear Energy, 30(5):555-565, 2003.

[19] T. Sterling, J. Salmon, J. D. Becker, F. D. Savarese. How to Build a Beowulf. A Guide to the
Implemnetation and Application of PC Clusters. The MIT Press, 239, 1999.

[20] G. A. Sena, D. Mergherbi, G. Isern. Implementation of a parallel genetic algorithm on a cluster of
workstations: Traveling salesman problem, a case study. Future Generation Computer Systems,
17:477-488, 2001.

[21] Ganglia Monitoring System: http://ganglia.sourceforge.net/.
[22] Fumo, N.; Mago, P.; Luck, R. ”Methodology to Estimate Building Energy Consumption Using

EnergyPlus Benchmark Models.” Energy and Buildings; (42:12); pp. 2331-2337, 2010.
[23] Garg, V.; Chandrasen, K.; Tetali, S.; Mathur, J. ”Energyplus Simulation Speedup Using Data

Parallelization Concept.” ASME Energy Sustainability Conference, New York: American
[24] Energy Plus, Available at: http://apps1.eere.energy.gov/buildings/energyplus/

Parallel computing for supporting complex energy simulation and optimisation
Ioan Petri, Haijiang Li, Yacine Rezgui, Chunfeng Yang, Bejay Jayan, Baris Yuce

397

