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Abstract With the emergence of the new major challenge on communities regarding global 
warming, significant researching efforts have been recently directed towards simulation 
based building energy optimisation with the overall objective of reducing energy 
consumption. Energy simulation and optimisation identifies a class of applications that 
demands high performance processing power in order to be realised within a feasible time-
frame. The problem becomes increasingly complex when addressing energy simulation and 
optimisation in large scale buildings such as sport facilities where the generation of optimal 
set points can be timing inefficient. Parallel processing on computing systems has enabled a 
wider range of complex simulations to be undertaken and are particularly useful due to their 
capability to handle and analyse massive amounts of data at high speed. In particular, such 
systems can provide the mechanisms for reducing the time for running complex simulations 
and optimising the various aspects within a problem. In this paper we present how parallel 
computing systems can be efficiently used for running and deploying EnergyPlus based 
simulations and optimisations in order to fulfil a number of energy related objectives. We 
adopt a comparison based approach by evaluating the performances of our system over a 
number of relevant scenarios. 
 

Keywords: High Performance Computing, Cluster Computing, EnergyPlus, 
Simulation, Optimisation 
 
1. Introduction 
 
The adoption of computing systems in the engineering community is at early 
stages. In the context of building energy simulation based optimisation there are a 
number of proposed computing solutions that have been developed, enhanced and 
are in use throughout the building energy community [1], [2], [3]. Scientists tend to 
use standard computational methods for solving the increasing complexity of the 
various energy problems. Lately, as with the new major challenge on communities 
regarding global warming, significant researching efforts have been directed 
towards simulation based building energy optimisation with the overall objective of 
reducing energy consumption. 
Parallel computing provides the means for running complex processes 
simultaneously by dividing large chunks of problems into smaller ones. With the 
multiple classes residing such as cluster computing and grid computing, parallel 
computing seeks to divide tasks and deploy them on existing forms of computing 
infrastructures. Whereas parallel computing on cluster based systems is widely 
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explored and used, parallel computation on High Throughput Computing (HTC) 
infrastructures such as Condor systems has not been enterely explored. This is 
mainly because High  Throughput Computing systems are focusing on 
computational tasks which can be processed over a long period of time and imply 
additional work for schedulling and monitoring. However, in the engineering 
domain the diversity of tasks and computational problems can be highly increased. 
Deciding on which computational infrastructure should be used to maximise 
performances and scalability can be difficult to achieve especially when the 
problems have various degrees of complexity [4]. On the other hand, High 
Performance Computing (HPC) based systems work with several nodes, up to 
thousands, dedicated for groups of users allowing parallel tasks to be executed. 
Whereas HPC systems save a lot of time for large tasks in terms of the number of 
floating point operations per second compared to personal computers or small 
servers, the nodes in HTC systems are regular machines such as desktop 
computers and usually they do not support parallel algorithms[1].  
Thus, HTC systems and HPC systems can provide a number of advantages when 
used for the right type of problems. However, the decision on the type of 
infrastructure to be chosen can be difficult to determine especially when the 
problem to be solved requires the execution of algorithms over a large number of 
data sets. An example for such a problem is the energy optimisation context where 
the input data sets can be continuously changing and the algorithm running 
necessitates sensitivity analysis for each data set result. Nevertheless, a key 
scenario is the optimisation with genetic algorithms (GA) using principles of natural 
evolution. In GA optimisation, the process deals with a randomly generated 
population of individual solutions where good solutions are selected and mixed by 
recombination to form new population of better solutions. For such an optimisation 
type, HPC systems are suitable only from the perspective of the associated 
process duration (the run time is short and the number of runs is huge). On the 
other end of the spectrum, HTC systems are suitable from the perspective of 
algorithm complexity where parallelism is necessary, the run time is large and the 
number of complete runs is relatively short so the correspondent mechanism of 
queue waiting becomes extremely practical [2]. 
We tackle the problem of energy optimisation with a hybrid approach by developing 
an algorithm compatible with the two computing environments -- HTC and HPC 
systems. More specifically we have created an infrastructure where HTCondor [6] 
and Torque [5] can run on different types of Energy Plus optimisation tasks. In this 
paper we propose a framework for deploying Energy Plus [21] based simulation 
optimisation and enable users to compute tasks within a HTC or HPC based 
infrastructure. As time and load are extremely important factors especially when 
dealing with real-time energy simulation and optimisation, we present and test our 
algorithm in different scenarios. We believe that our solution is applicable not only 
for complex energy optimisation problems but can be easily extended to other 
types of problems. The reminder of the paper is as follows: Section 2 and Section 3 
explore related models and present the approach we follow in this paper; Section 5 
presents the methodology followed by a detailed use case in Section 6. Section 7 
presents the results. We present the conclusions in Section 8. 
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2. Related work 
 
In this section we explore several related approaches in the field of energy 
simulation and optimisation from two perspectives: (i) computing based 
architectures and (ii) optimisation based solutions. 
 
2.1 Computer Architectures 
 
The architectures of parallel machines have emerged over the time from computer 
architectures with Single-Instruction-Multiple-Data (SIMD) to Multiple-Instruction-
Multiple-Data (MIMD) models. The SIMD has appeared as a simple parallel 
computer model with one instruction unit and several processing units, while the 
MIMD processors have the ability to execute their tasks in the memory. Shared-
memory machines (SIMD) are configured to enable the processors to address the 
whole memory space and the communication between the tasks is done through 
read and writes operations on the shared memory. The distributed memory 
machines (MIMD) have their memory physically distributed among the processors. 
Each processor can only address its own memory, and communication among the 
processes executed on different processors is performed by messages passed 
through the communication network [9]. 
On the other hand, the SMP machines provide a new mechanism for connection 
via the fast local networks (Gigabit Ethernet) adding fault-tolerance and excellent 
cost/performance ratios. This has led to the emergence of clusters of computers 
(based on Linux OS, Myrinet, off-the-shelf PCs) which is a current trend in parallel 
computing as the fastest and most powerful computers according to various 
studies [16]. Parallel computers mainly use a type of UNIX4 operating system with 
an X-Window based interface. On the market, there are also other operating 
systems than the UNIX/Linux mainstream, Microsoft Windows 2003 Server, Apple 
Mac OS, Open VMS, but they do not compete successfully in High-Performance 
Computing due to various reasons (price, hardware support, scalability, 
maintenance) [15]. 
 
2.2. Optimization solutions 
 
Genetic algorithms (GA) are based on principles from natural evolution and can 
generate an optimal solution from a population of candidate solutions. Generally, 
GAs begin with a randomly generated population of individual solutions where 
solutions are selected and mixed by recombination to form new population of better 
solutions. Genetic algorithms do not guarantee optimal solutions, but they can 
produce high quality solutions in a reasonable amount time [7]. A disadvantage of 
GAs is that they require a large number of, sometimes thousands of, evaluations to 
find adequate solutions for complex optimisation problems [8]. 
A number of different researching attempts have been developed around generic 
algorithms and their efficiency in solving optimisation problems. Sefrioui et al. [11] 
developed a Hierarchical Genetic Algorithms (HGAs) with multi-layered hierarchical 
topology and multiple models for optimisation problems. The result was composed 
by a mix of a simple and complex model with a significant improvement in regards 
to the processing time when compared to complex models. For the problem of 
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synchronism for migration of various parallel distributed GAs, Alba and Troya 
(2001) [10] extended the existing results to structured-population GAs and 
demonstrated linear and even super-linear speedup when run in a cluster of 
workstations. From the application perspective, Jelasity et al. [12] proposed a tool 
for automatic learning of algorithm components based on distributed evolutionary 
algorithms for problem classes. The tool was based on a multi-objective conceptual 
framework implemented in Java and capable of running distributed experiments on 
the Internet. Arenas at al. (2002) [13] developed a framework for the automatic 
distribution of evolutionary algorithm processing through a virtual machine built 
from a large number of individual computers on the Internet. The benefits of 
parallel genetic algorithms have been also tested by comparison with a traditional 
non-parallel GA alongside an optimisation problem [14]. It was identified that 
parallel GA provide gains not only in terms of computational time, but also in the 
optimisation outcome. Thus, parallel algorithms can be reliable methods for 
reducing calculation time of simulation-based GA optimisation. In this paper we 
develop a parallel genetic algorithm based on NSGA-II compatible with two 
computing frameworks -- HTCondor and Torque. 
 
3. Computing systems and applications 
 
In our study we use two environments such as HTCondor and Torque for deploying 
our algorithm.  
HTCondor is an open-source high throughput computing workload management 
software framework for a cluster of distributed computer resources. As most of 
personal computers have more processing power and storage space than the 
supercomputer of last century is has become possible to build a network of such 
computers. HTCondor is widely used to exploit the distributed computers to their 
full potential for computational intensive tasks, such as simulation calculations [3].  
The mechanism of task scheduling in HTCondor is different to the mechanism of 
related systems. In HTCondor system, after the submission, the jobs run until a 
user tries to use the computer interrupting the processed job and then restarting it 
on another available machine. HTCondor can be used to manage a cluster of 
dedicated compute nodes (our case) greatly enhancing the completion time and 
balancing the load. In our scenario, the machines are part of a dedicated cluster 
and every task submitted to HTCondor will be processed without interruption. 
In Torque system a task contains both the details of the processing to be carried 
out (name and version of the application, input and output, etc.) and directives for 
the computer resources needed (number of CPUs, amount of memory). Tasks are 
run as batch jobs, i.e. in an unattended manner by the user submitting a job to the 
execution queue. Tasks are managed by a task scheduler, a piece of software 
which is in charge of allocating the computer resources requested for the task, 
running the task and reporting back to the user the outcome of the execution. 
Running a Torque task involves at the minimum the following steps: (i) preparing a 
submission script and (ii) submitting the task to execution [5]. 
From the energy simulation perspective, EnergyPlus has been validated as an 
efficacious tool for running energy simulations [19], [20]. EnergyPlus is an energy  
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Figure 1 Cluster infrastructure 

 

analysis and thermal load simulation tool that can calculate the heating and cooling 
loads necessary to maintain thermal control setpoints, conditions throughout an 
secondary HVAC system and coil loads, and the energy consumption of primary 
plant equipment. In EnergyPlus, inputs and outputs are handled as ASCII (text) 
files as follows: 

- the Input Data Dictionary (IDD) that describes the types (classes) of  nput 
objects and the data associated with each object; 
- the Input Data File (IDF) that contains all the data for a particular 
simulation. 
- the Weather Data File (EPW) that contains all the data for exterior climate 
of a building. 

From a computational perspective EnergyPlus necessitates reliable computational 
infrastructure to run. When dealing with small EnergyPlus models (with small  
umber of surfaces, zones, and systems), which do not require large amounts of 
computer memory, computers with faster CPUs are more effective in reducing run 
time than computers with more memory. For large models, more and faster  
computer memory including RAM and internal cache may be more effective in 
reducing run time. The amount of computer memory only helps to a certain point  
as if the simulation produces multiple reports, the hard drive access speed also 
becomes important in reducing the run time.  
 
5. Methodology 
 
We consider a number of transactions within the set T = {t1, t2, t3, ..., tn} that can take 
place within the system, where each transaction ti maps a complex optimisation 
problem (see figure 2). Each transaction ti can have an objective (single objective) 
obi   or a set of objectives (multi-objective) [ob1, ob2, …, obj ]. Each transaction ti is 
composed by a set of tasks ti = {ts1, ts2, ...,tsm} which generate a result ri = {ts1 + 
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ts2+,..., +tsp},  where n is determined by the complexity of the optimisation problem 
to be resolved. Each task tsi is mapped as an EnergyPlus simulation. 
 

 
Figure 2 Algorithm deployment 

 

The result ri is determined in accordance with the objectives obj of the transaction. 
The tasks associated with one transaction ti are run for a number of rounds 
noOfRounds until the result of the round satisfy the objectives. The tasks of a new 
generated round r’i = {ts1’ + ts2’+, ..., tsp’} are based on the results obtained from 
round ri where tsi’ = f[r(tsi)], tsi’ is a function of result r(tsi). The termination criterion of 
each transaction resides on the following two conditions:  

(i) Maximum number of rounds (MaxNoOfRounds) -- number of rounds 
after which a transaction finishes 

(ii) Similarity of results (ri ~ ri+1) -- the level of similarity between results 
in consecutive rounds; if two consecutive rounds are very similar 
the transaction processing will stop. 

 In our system each ti has a set of associated parameters such as:  
- Functional parameters: [taskId; objective] 
- Non-functional parameters: [time; load; CPU usage] 

Each transaction ti has a number of tasks and a corresponding computation time ptj 
calculated as ptj = noOfRounds * noOfTasks, where noOfRounds determines the 
number of rounds of transaction ti and noOfTasks determines the number of tasks 
composing the transaction. 
The number of tasks to be run within one transaction is dependent on the objective 
and the variables of the simulation model. At each stage the simulation model is 
updated by refining the input values of current simulation round with previous 
simulation round results until the optimisation objective is achieved (see Algorithm 
1). Our framework is based on a cluster system composed by a number of servers 
S = {s1, s2, s3,…,sm} which can support a number of transactions. Each si ∈S is a 
cluster server containing 12 CPU cores such as si = {c1, c2, c3,…,cp}, p=12. The 
cluster is monitored by a scalable distributed system called Ganglia [17] which 
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helps us in giving a graphic representation of the various metrics we report in 
Section 6.  
 
Algorithm 1: Parallel computation algorithm 
1: Initialise parameters of the algorithm; 
2: while Transaction iteration is not completed do 
3:  Generate a new ti; 
4:  for all tsi := 1 to tsn; do 
5:   Get variables of the tsi; 
6:   Create a working folder for the computing task tsi; 
7:   Clear the computing transaction working folders; 
8:   Create input data file for task tsi working folder; 
9:   Copy necessary files into the task tsi working folder; 
10:  end for 
11:  Submit transaction ti 
12:  Waiting for the transaction ti to finish; 
13:  for all tsi := 1 to tsn do 
14:   Parse task tsi output files; 
15:   Set objective values and constraint values; 
16:  end for 
17:  if Meet transaction terminate condition then 
18:   Transaction iteration complete; 
19:  end if 
20: end while 

 
Within the system, servers are organised in two parallel based environments such 
as Torque and HTCondor, where two types of transactions can take place:  

(i) Torque based transactions -- containing tasks to be completed within the 
Torque based system - identified as tj = {ts1 + ts2+, …,tsn}. Each tsi is a 
task representing an EnergyPlus simulation process, whereas tj is a 
transaction representing an optimisation process composed by many 
tsi tasks.  

(ii) HTCondor based transactions -- containing tasks to be completed within 
the HTCondor based system - identified as tk = {ts1 + ts2+ …+tsm}. 

 
6. Optimisation Use Case 
 
We present a use case from the SportE

21
 project pilot called FIDIA, a public sport 

building facility, located in Rome, Italy. The building we have used in the pilot study 
has wooden external walls of 9cm and a wooden external roof of 9cm. The floor is 
made of concrete. The windows are single glass with a thermal transmittance of 
5:7W=m2K and a solar gain of 0.7. The geometry of the building is composed of an 
Gable roof with Hmin = 3m and Hmax = 6m with window surfaces of about 70 m2. 
In this use case energy consumption E is considered as the main objective of the 
optimisation model composed by four different sub-objectives such as: the energy 
of heating Eh, the energy of cooling Ec, the energy consumed by fans Ef , and the 
energy consumption of generators Eg. 

                                                      
1 SportE

2
 is a research project co-financed by the European Commission FP7 programme under the 

domain of Information Communication Technologies and Energy Efficient Buildings.  
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 E = Eh + Ec + Ef + Eg  
The optimisation model is shown as following: 

Objective : min Obj = Eh + Ec + Ef + Eg 

Design variables : xi; i = 1- 6; 
The optimisation model, composed by four objectives is based on Energy Plus 
simulations with a number of six design variables. These variables are updated 
after each round of simulation until the ending conditions of the optimisation 
process are triggered.  

Objective : 
minimize E = Eh + Ec + Ef + Eg 
Design variables : 
x1 ∈  [10, 1000] 
x2 ∈  [10, 1000] 
x3 ∈  {0:002, 0:003, 0:004, 0:005, 0:006, 0:008, 0:01, 0:012, 0:015, 0:018} 
x4 ∈  {0:002, 0:003, 0:004, 0:005, 0:006, 0:008, 0:01, 0:012, 0:015, 0:018} 
x5 ∈  [0:0017, 0:0036] 
x6 ∈  [0:012, 0:16] 

The sports facility is equipped with sensors and actuators for monitoring, control  
and optimisation of the facility. The building has metering capability to determine  
consumption of electricity, gas, biomass, water and thermal energy. This data can  
be accessed through a specialist interface and recorded for analysis 

 
7. Experiments 
We deploy a number of transactions with an associated objective obj on the 
infrastructure with dedicated cluster machines. In our system there are 8 dedicated 
cluster machines each having 12 CPU cores and 3201 MHz CPU speed. 
We use Ganglia to measure various parameters such as: completion time, load, 
average utilisation, CPUs usage. 
 
Experiment 1: Load and time based comparison  - This experiment presents the 
load generated by the algorithm within the two infrastructures. From Figure 3 is 
observed how the load(axis o-y) and time(axis o-x) affected with the transaction 
evolves. Whereas for the HTCondor based execution the load is higher than for 
Torque, the execution time associated with the HTCondor execution is shorter that 
for Torque system. This is determined by the scheduling policies of the two 
infrastructures. While HTCondor distributes the task on all the CPU Cores, the 
Torque schedules tasks according to a time frame. 

 
Figure 3 Load and time for multiple transactions 
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Experiment 2: Computation load and time - In this experiment we compute the 
algorithm on the HTCondor and Torque infrastructure and measure the time 
parameter.  

 
Figure 4 Computation load and time in cluster 

This experiment shows the performances of the two infrastructures when deploying 
transactions with similar complexity degree(same number of objectives). This 
experiment provides a general overview on the load(axis o-y) and the computation 
time(axis o-x) associated with a transaction. Figure 4 demonstrates that on 
HTCondor the load is signiffcantly higher comparing to Torque. In what concerns 
the overall computation time is observed that the completion of a transaction takes 
longer on Torque. 

 
Figure 5 Comparing hosts in load and CPU 
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Experiment 3: Host based comparison - In this experiment we compare the load 
and CPU parameters of the two execution systems. By using a similar degree of 
complexity for both cases is observed that CPU load has different trajectories 
according to the execution environment used to deploy the transaction. Whereas 
the first two experiments provide an evaluation from the perspective of load(axis o-
y) and time affected with a transaction(axis o-x), in this experiment we present a 
detailed comparison of the indivual host machines.  
From the comparison illustrated by Figure 5 it can be concluded that HTCondor 
system can provide a higher effciency in what concerns the load and computation 
time. On the other hand, Torque system has the advantage of a better scheduling 
mechanism, signiffcantly reducing the computation load but with an additional 
delay concerning transaction completion.  
 
Experiment 4: Comparison of single algorithm versus parallel algorithm  - This 
experiment compares single CPU process with parallel process on HTCondor 
emphasising the capability of the parallel algorithm to use all the CPU cores 
comparing to the case when a transaction is deployed as a regular process with a 
single process execution. This experiment presents the load(axis o-y) and 
execution time(axis o-x) within two different experimental setups: (i) single CPU 
process and (ii) parallel algorithm. 

 
Figure 6 Comparing single vs parallel algorithm 

 
From Figure 6 is observed that the execution time of the optimisation process 
takes longer when deploying the algorithm on a single CPU process. The interval 
of computation time is signiffcantly reduced when deploying the algorithm to a 
parallel process. It can be observed that a single process takes around 4 days to 
complete while the parallel process reduces the execution time of the optimisation 
to couple of hours. 
 
8. Conclusions 
 
This paper presents a parallel framework for computing complex simulation based 
optimisation problems. As existing today, the computing capabilities can solve 
large-scale, complex engineering problems in a significantly shorter time compared 
with single-processor machines. As stated, energy simulation and optimisation 
identifies a class of applications demanding high performance processing power 
in order to be realised within a feasible time-frame. 
We present our parallel algorithm by measuring the performances in a number of 
different scenarios. We test the performances of the algorithm both on a HTCondor 
system and Torque system and evaluate the impact of the load it produces and the 
computation time. Is observed that our algorithm performs better on a HTCondor 
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environment due to a key capability of using the available cores. When testing the 
algorithm on a Torque environment is observed that the load is lower but 
computation time increases comparing to HTCondor. We demonstrate that our 
algorithm can represent a realisable solution not only for complex energy 
optimisation problems but can be easily extended to other types of problems. 
When evaluating the single process and parallel process case of the algorithm is 
observed that our parallel algorithm reduces the computation time significantly. 
Althrough in the evaluated case we only use continuous variables and discrete 
optimisation, our system can cope with diffferent types of variables and 
optimisations. The advantages of our solution rely not only on the performances of 
the algorithm but also on the unique combination of different submission systems 
such as HTCondor and Torque. By combining the two environments within a single  
solution we facilitate an optimum between the high execution time and robust 
scheduling. 
 
Acknowledgements: The research presented in this work is supported by EU FP7 
SportE2 project, ICT for Energy Efficiency in European Sport Facilities. 
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