Advances in Smart Systems Research ISSN 2050-8662
Vol. 6. No. 2 : pp.65-74 : k17is-218

Local search method based on biological knowledge for the
biclustering of gene expression data

Ons Maéatouk!2, Wassim Ayadi?:3, Hend Bouziri', and Beatrice Duval?

1 LARODEC, Université de Tunis, 92 Boulevard 9 Avril, 1007 Tunis, Tunisie
2 LERIA, Université d’Angers, Université Bretagne Loire, 2 Bd Lavoisier, 49045 Angers, France
3 LaTICE, ENSIT, Université de Tunis, 92 Boulevard 9 Avril, 1007 Tunis, Tunisie

Abstract

Biclustering is a very interesting technique for unsupervised analysis of gene expression data.
It aims to discover subsets of genes having similar behavior on a subset of conditions; such
biclusters are related to close biological functions. The majority of existing biclustering al-
gorithms are based on statistical criteria (e.g. size, coherence and structure...) to define the
bicluster quality. However these measures are not directly related to biological knowledge and
they may produce results that are difficult to interpret by a biologist. In fact, it is recognized that
the integration of some biological information to guide the extraction of the biclusters ensures
their relevance and their non-triviality. Therefore this work proposes a local search method
that relies on ontological knowledge to cluster the genes while a correlation measure is used
to cluster the conditions. An experimental study is performed using real microarray datasets.
The results demonstrate the importance of the integration of the biological knowledge in the
search process, to promote the discovery of non-trivial and biologically relevant biclusters.
keywords: Biclustering; Local search method; Biological knowledge; Gene annotation; Gene
expression; Computational Biology

1 Introduction

Biological data are characterized by their wealth of information. Transcriptomic data provided by
microarray or RNA-seq analysis are used to decipher the structural and functional relationships
between the genes. Among the commonly used methods to understand and evaluate functional
similarity between genes, there is the measure of their expression similarity [9]. It is assumed
that a group of genes sharing a similar expression profile shares also the same regulatory regime
and consequently the same functionalities. Transcriptomic data may be analyzed by a biclustering
process [18, 15] that tries to cluster simultaneously the genes and the conditions; a bicluster is a
subgroup of genes that exhibit a common behavior under a subgroup of conditions.

The biclustering aims to combine simultaneously the rows and the columns of a matrix to
obtain consistent, homogeneous and stable biclusters. These biclusters represent a gene subset
with same behavior under a condition subset. Each gene or each condition can participate in one
or more biclusters.

Formally, the microarray data is represented as a data matrix M (1, J), where I is a gene set
and J a condition set, and the cell m;; represents the expression level of the i'" gene relative to
the j** condition. A bicluster B(G, C) associated with a data matrix M (I, J) is a sub-matrix such
that G C I and C C J. The biclustering is an optimization problem aiming to extract and discover
maximal biclusters with similar behavior genes and close biological functions.

The biclustering problem is a highly combinatorial problem with a search space size O(2//1+171)
[31]. Moreover, in the general case, the biclustering problem is NP-hard [7], which explains why
the majority of existing biclustering methods do not guarantee the optimality of their solutions.

Several algorithms [3, 4, 28, 17] and different measures have been proposed to extract a set of
biclusters from a dataset. However, statistically significant solutions with good homogeneity are
not necessarily biologically relevant. To obtain more relevant solutions, it would be interesting to
incorporate some biological knowledge in the biclustering process. This knowledge must be used
to guide the search of the biclusters and to ensure their biological relevance and their non-triviality.
Despite that, only a few biclustering algorithms integrate biological knowledge into their research
processes. Al-ISA [32], GenMiner [19] and scatter biclustering [26] algorithms annotate data with
functional terms retrieved from ontologies repositories. They use these annotations to guide the
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search. Fang et al. algorithm [10], Data-Peeler [14] and bi-sets mining [5] are constraint-based
algorithms enabling the discovery of dense biclusters and guaranteeing the satisfiability of con-
straints derived from background knowledge. The algorithms proposed by Menga et al. [20], Raya
and Misra [29], Nepomuceno et al [24,25] and Pio et al. [27] define a fitness function that ag-
gregate statistical and biological similarity measures. These biclustering algorithms integrate the
biological knowledge in a biological similarity measure and use a statistical measure to find non-
trivial biclusters with relevant patterns.

In this context, our work proposes a local search method that integrates biological knowledge
in the search process. By using a biological similarity measure, it extracts sets of genes with close
biological functions. Then, by assigning conditions to the extracted genes, it captures relevant
patterns based on the average correlation function. To evaluate the performance of the proposed
method and to define the quality of the extracted biclusters, an experimental study is achieved on
real microarray datasets. This paper is organized as follows. In section 2, the biclustering problem
is defined and our local search algorithm is analyzed. Section 3 is dedicated to an experimental
study of the proposed algorithm. Both statistical and biological evaluations are conducted. Con-
clusions are given in the last section.

2 Our LSM algorithm for the biclustering problem

Local search algorithms are widely used in difficult optimization problems, such as bioinformatics
problems. They are characterized by their simplicity and their easy integration in other algorithms.
The local search algorithm generally starts from initial reasonable solution and tries to get better
solutions iteratively. At each iteration, series of local modifications are applied.

To ensure the quality of the biclusters, the initial solutions are constructed by the CC algorithm
[7], not by a randomization process. Indeed, CC is recognized for its reasonable and time-efficient
results and its almost total coverage of genes and conditions. For each bicluster of the initial
solutions, the proposed Local Search Method (LSM) extracts genes with close biological func-
tions based on the biological similarity measure. Then, it captures relevant patterns based on the
average correlation function by assigning the right conditions to the extracted genes.

2.1 Data input

The input data of the algorithm are mainly the gene expression matrix M, the biological similarity
matrix Mp;.. sim and the biclusters of the initial solutions. As mentioned previously, to ensure a
reasonable quality and a high coverage of genes and conditions to the biclusters of the initial
solution, these biclusters are extracted by the CC algorithm.

The rows and the columns of the gene expression matrix M correspond respectively to the
genes and the conditions of the microarray data. A cell represents the expression level of a gene
under a particular condition.

Regarding the biological similarity matrix Mpg;, sim, it is calculated using the GOSemSim [33]
which is an R package for computing semantic similarity among GO terms and gene clusters.
It depends on the GO (Gene Ontology) annotations provided by Bioconductor [12] to obtain the
GO terms and the relations between them. Several functions are provided by the GOSemSim
package such as the mgeneSim function. It is designed for large-scale analysis to calculate the
biological similarity between two gene sets. The mgeneSim function output is a biological similarity
matrix Mp;,.sim- Both rows and columns correspond to the genes of the microarray data and cells
correspond to the pairwise GO semantic similarities of the two gene sets. Its values vary between
0 and 1. The higher the value obtained is, the higher is the similarity between the gene pair.

2.2 Objective function

The main biclustering goal is to extract biologically relevant biclusters of highly correlated genes.
Thus, two criteria have to be optimized. A statistical criterion based on the coherence between
bicluster genes and a biological criterion based on the biological relevance of these genes.

The majority of existing algorithms, such as those proposed by Menga et al. [20] and Nepo-
muceno et al. [24,25], integrated the biological criterion in the fitness function by aggregating
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them with statistical criterion. However, even by giving the same importance to the two criteria,
this aggregation does not reflect the real bicluster quality. For example, a bicluster with a medium
quality does not necessarily have a medium value for the correlation measure and the biological
similarity measure. It can be biologically relevant and does not have a good correlation or does
not biologically relevant and have a good correlation. So, this aggregation may lead to not clearly
distinguish the real bicluster quality.

Moreover, the gene annotation depends only on genes. So, the biological similarity measure
evaluates the biological relevance of the bicluster genes but not the conditions. Contrary to the
biological similarity measure, the correlation measure tries to find interesting patterns in the bi-
clusters, considering both genes and conditions. Therefore two biclusters, with the same gene set
and different condition sets, provide the same value for similarity biological measure and different
value for the correlation measure.

For these reasons, we choose to use separate measures for each criterion (statistical and
biological) to define the solution quality and guide the search to good solutions.

Correlation measure The average correlation function, proposed by Nepomuceno et al. [22], is
used to evaluate the correlation between the bicluster genes. Its optimization allows the extraction
of all biclusters’ kind. The average correlation of the bicluster B(G, C) is defined as follows:

|Gl |G|
cov gng
B 1
p(B) = \GHG\—lZZ . (1)
1=1 =141 %9 93

where cov(g;, g;) represents the covariance of the rows corresponding to the gene ¢; € G and the
gene g; € G.

o, (respectively o,.) represents the standard deviations of the rows corresponding to the gene
g; € G (respectively the gene g; € G). This measure varies between 0 and 1. The higher p(B) is,
the higher is the correlation between the bicluster genes.

Biological similarity measure The matrix Mp;, sim, calculated by the mgeneSim function of the
R package GOSemSim [33], is used as input data. It is used in the search process to measure bi-
ological similarity between the genes. The biological similarity of a bicluster B(G, C) is calculated
as follows:

IG| |G|
2
T ST Mo sim(g0; 2
BlOSlm(B) |G|(|G| — 1) p MBlO-Slm(g“gJ) ( )

where g; € G and g; € G. This measure varies between 0 and 1. The higher the BioSim(B) value
is, the higher is the similarity between the bicluster genes.

2.3 Description of the Local Search Method (LSM)

The proposed Local Search Method (LSM) tries to generate new biclusters by improving the
biological and the statistical quality of the biclusters of the initial solutions. It extracts genes with
close biological functions based on the values of biological similarity matrix Mp;,.s:m and the
biological similarity measure BioSim (Equation 2). Then, it captures relevant patterns based on
the average correlation function p (Equation 1) by assigning the right conditions to the determined
genes. The search process treats the gene part and the condition part separately. As previously
explained, contrary to the correlation average function, the biological similarity measure depends
only on the gene set of the bicluster. It does not take into consideration its condition set.

For B(G,(C), a bicluster of the initial solution, the local search step constructs a bicluster
B'(G',C"). In G’, we keep only the genes of G that have a great number of genes very similar
to them according to the biological similarity matrix Mpg;,.5im. This choice is controlled by a pa-
rameter %NbGene and depends on a threshold Thg;,.sim defined as BioSim(B) the average
biological similarity between all the pairs of genes of G.

On the same way, C’ keeps the conditions of C that are highly correlated according to the
correlation matrix M¢,,... This matrix is calculated based on the average correlation function p. It
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presents the correlation between the condition pairs for the determined gene set G’. Both rows
and columns correspond to the condition set C. Analogically, the choice is controlled by a pa-
rameter %N BCondition and depends on a threshold Theorr.sim defined as p(B) the average
correlation of the bicluster B.
For a bicluster B(G, C), let us consider the biological similarity matrix Mp;,. s:» and the gene
expression matrix M as data input and let % NbGene and %NbCondition be chosen parameters:
— Compute Thgio sim = BioSim(B) (EQ. 2) and Theorr.sim = p(B) (EQ. 1)
— Foreachgenege G
e Define Simi(g) = { ¢’ € G/ Mpio.sim(9,9") > Thpio.sim} I/ Sim1(g) is therefore the set
of the genes biologically similar to the gene ¢
— Sort the list of sets Sim;(g) according to their cardinality |Sim1(g)| // So that the next step
checks firstly the similarity between the maximum number of genes
— For each gene ¢’ € Sim;(g) following the sorting order
e Compute Thyp.Gene = NbGene x |Simq(g)]
o Define Sim2(g') = { g// € Szml (g) / MBio.Sim(g/ag”) > ThBio.Sim}
o If |Sima(g')| > Thnv.gene : Add gene ¢’ to the gene part G’ of the bicluster B’ / To ensure
that the similarity of the bicluster B’ is better than that of the bicluster B
— Compute the correlation matrix Mc,-- where the cell Me,,.(c, ') represents the average
correlation of the genes of the gene part G’ under the conditions {¢, '} such as ¢ € C and ¢
eC.
— For each condition c € C
e Define Simy(c) ={ ' € C/ Mgorr(c, ') > Theorr.sim | // The set of the conditions corre-
lated with the condition ¢
— Sort the list of sets Sim;(c) according to their cardinality | Sim;(c)|
— For each condition ¢’ € Sim (c) following the sorting order
o Compute Thyp.condition = %0NbCondition x |Sim4(c)|
o Define Simy(c') = { ¢’ € Simy(c) | Mcorr (¢, ") > Theorr.sim }
o If |Sima(c')| > Thb.condition : Add condition ¢’ to the condition part C’ of the bicluster B’
// To ensure the correlation between all the conditions of the output bicluster B’.

3 Experimental study

In order to evaluate the capacity of the proposed method to extract relevant biclusters and to
analyze the influence of the integration of biological knowledge in the search process, an ex-
perimental study is performed using real data. Two gene expression datasets are considered.
The first dataset is the Yeast cell cycle (2884 genes, 17 conditions) described by Tavazoie et al.
[30] and then pretreated by Cheng and Church [7]. The second one is the Saccharomyces cere-
visiae dataset (2993 genes, 173 conditions) described by Gasch et al. [11]. For both datasets,
the assessment is based on common practice inferred from biclustering literature. The statisti-
cal assessment of the quality of a bicluster is defined by its average correlation value and its
size (number of genes and number of conditions). Regarding the biological assessment, the per-
centage of enriched biclusters, one of the classic biological evaluation criteria commonly used in
biclustering [24], and the number of enriched GO terms per bicluster are computed. In addition,
the significant GO terms of a selected bicluster are presented.

The parameter settings have been fixed after several tests. Everytime, we use different param-
eters to keep those that provide the best results. The parameters % NbGene and %NbCondition
are fixed to 0.25. In order to ensure the stability of the results, the process is repeated 30 times.
The results presented in the following subsections are the average of the results obtained for the
30 runs. They are compared to the CC algorithm results (used as initial solutions). This allows to
demonstrate the significant influence of the proposed method on the relevance of biclusters.

The LSM results are also compared to those of different state-of-the-art biclustering algo-
rithms: BiMax [28], ISA [4], OPSM [3] and X-Motif [21]. The results of these algorithms are gener-
ated using the Biclustering Analysis Toolbox-plus (BicAT-plus) [1], a common biclustering analysis
toolbox in which most important biclustering algorithms were implemented. The results were not
compared to other algorithms that integrate biological knowledge (Al-ISA [32], Data-Peeler [14],
bi-sets mining [5]), since these algorithms were not available and the results provided in the pa-
pers came from different datasets.
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3.1 Statistical results

Number of genes Number of conditions Average correlation

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

CcC 39.62 14 47 3.16 2 17 0.84 0.72 0.89
LSM 37.18 9 43 12.49 4 15 0.92 0.89 0.96

Table 1. Average, minimum and maximum of the number of genes, the number of conditions and the average
correlation value of the extracted biclusters for the Yeast Cell Cycle dataset

Number of genes Number of conditions Average correlation

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

CC 81.11 39 258 19.64 9 23 0.33 0.14 0.43
LSM 79.52 33 244 18.98 11 21 0.81 0.58 0.96

Table 2. Average, minimum and maximum of the number of genes, the number of conditions and the average
correlation value of the extracted biclusters for the Saccharomyces cerevisiae dataset

Table 1 and 2 summarize the statistical quality of the biclusters extracted by the proposed LSM
algorithm and the CC algorithm, respectively, for the Yeast Cell Cycle and the Saccharomyces
cerevisiae datasets. They present the average, minimum and maximum number of genes, number
of conditions and average correlation value. It can be observed that the number of genes and the
number of conditions decreased slightly by applying the proposed method LSM. The reason can
be that the bicluster size depends on the size of the biclusters of the initial solutions (generated
by the CC algorithm). The proposed method LSM retains only the biologically similar genes.

On the other hand, for the two datasets, the average correlation of the obtained biclusters
is significantly higher than CC. It can be seen that for both datasets, the biclusters extracted by
the two algorithms are highly correlated. Indeed, for the Yeast Cell Cycle dataset, the proposed
LSM algorithm (respectively the CC algorithm) records an average correlation value equal to
0.92 (respectively 0.84). Contrariwise, for the Saccharomyces cerevisiae dataset, the average
correlation value of the biclusters extracted by the CC algorithm does not exceed 0.43. In regards
to the biclusters extracted by the proposed LSM algorithm, the average correlation values vary
between 0.58 and 0.96. It can be noted that the correlation of the biclusters extracted by the LSM
algorithm does not depend on the correlation of the initial solutions.

BiMax ISA OPSM X-Motif CcC LSM
Number of genes 24.0 76.3 437.94 1.2 39.62 37.18
Number of conditions 3 8.7 9.5 114 3.16 12.49
Average correlation 0.66 0.50 0.91 0.71 0.84 0.92

Table 3. Average of the number of genes, the number of conditions and the average correlation value of the
biclusters extracted by different biclustering algorithms for the Yeast Cell Cycle dataset

BiMax ISA OPSM X-Motif CC LSM
Number of genes 32.8 76.27 95.58 1.12 81.11 79.52
Number of conditions 3 8.71 12.5 34.52 19.64 18.98
Average correlation 0.68 0.59 0.87 0.97 0.33 0.81

Table 4. Average of the number of genes, the number of conditions and the average correlation value of the
biclusters extracted by different biclustering algorithms for the Saccharomyces cerevisiae dataset

Table 3 and 4 compare the statistical results of several biclustering algorithms, respectively,
for the Yeast Cell Cycle and the Saccharomyces cerevisiae datasets. It can be seen that the
LSM algorithm competes favorably with several biclustering algorithms. For the Yeast Cell Cycle
dataset (Table 3), the LSM algorithm outperforms other algorithms in terms of gene correlation
with a reasonable bicluster size. As for the Saccharomyces cerevisiae dataset (Table 4), the best
gene correlation is recorded for the biclusters extracted by the X-Motif algorithm with an average
value equal to 0.97. It can be explained by the fact that its number of genes is very small (average
number of genes equal to 1.12). It can be noted also that the LSM and the OPSM algorithms
have relatively close results with high gene correlation and reasonable bicluster size. So, it can
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be inferred that the proposed LSM algorithm allows to capture relevant patterns and especially to
extract biclusters of highly correlated genes, compared to the other biclustering algorithms.

3.2 Biological results

The biological significance of the obtained biclusters can be reflected by their functional enrich-
ment based on the Gene Ontology [8] annotations. The gene products are described by three
ontology structures provided by the GO in term of biological process, molecular function and cel-
lular component.

In this context, the web tool GOTermFinder [6, 13] is used to seek significant GO and to anno-
tate gene products in a given list. The enrichment degree of the biclusters is measured by their
adjusted p-value [2,16,23]. The biclusters with a low p-value (lower than 5%) are considered
as enriched. This means that the majority of the genes in this bicluster have common biological
functions. The best biclusters have a p-value close to 0%.

Perc. of enriched biclusters Avg. nb. of GO terms per bicluster
B. process M. function C. component B. process M. function C. component
CcC 16 % 18 % 16 % 1.67 1.25 1.33
LSM 98 % 98 % 96 % 18.62 11.98 9.28

Table 5. Percentage of enriched biclusters and average number of enriched Go terms per bicluster for the
Yeast Cell Cycle dataset

Perc. of enriched biclusters Avg. nb. of GO terms per bicluster
B. process M. function C. component B. process M. function C. component
CcC 20 % 22 % 18 % 1.8 1.67 1.25
LSM 100 % 97 % 95 % 39.55 8.23 17.46

Table 6. Percentage of enriched biclusters and average number of enriched Go terms per bicluster for the
Saccharomyces cerevisiae dataset

Table 5 and 6 present the percentage of enriched biclusters with p-value lower than 0.1% and
the average number of enriched Go terms per bicluster in the three ontology structures: B. process
(Biological process), M. function (Molecular function) and C. component (Cellular component) of
the proposed LSM algorithm and the CC algorithm, respectively, for the Yeast Cell Cycle and the
Saccharomyces cerevisiae datasets.

It can be observed that the most enriched biclusters are those extracted by the proposed LSM
algorithm. It can be seen in Table 6 that only 20%, 22% and 18% of the biclusters extracted by the
CC algorithm are enriched for the Saccharomyces cerevisiae dataset in the ontology structures:
biological process, molecular function and cellular component, respectively. Even for the Yeast
Cell Cycle dataset (Table 5), only 16%, 18% and 16% of the biclusters are enriched respectively
for the biological process, molecular function and cellular component. However, the LSM algorithm
is able to extract many enriched biclusters. Indeed, 98%, 98% and 96% of the biclusters extracted
by the LSM algorithm for the Yeast Cell Cycle dataset (Table 5) and 100%, 97% and 95% of them
for the Saccharomyces cerevisiae dataset (Table 6), are enriched respectively for the biological
process, molecular function and cellular component.

Moreover, it can be noted that the biclusters obtained by the proposed LSM algorithm have an
average number of GO term higher than that obtained by the CC algorithm. The average GO term
number per bicluster of the CC algorithm does not exceed 1.67 for the Yeast Cell Cycle dataset
and 1.8 for the Saccharomyces cerevisiae dataset. It means that only some GO terms are shared
by the genes of the obtained biclusters. That can be explained by the fact that the annotated
genes are in the upper levels of the GO hierarchy.

Contrariwise, the LSM algorithm records respectively for the biological process, the molecu-
lar function and the cellular component, an average GO term number of 18.62, 11.98 and 9.28
for the Yeast Cell Cycle dataset and 29.55, 8.23 and 17.46 for the Saccharomyces cerevisiae
dataset. It means that the obtained biclusters are composed of genes sharing a high number of
GO annotations. So, more biological information related to the bicluster genes is provided.
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Figure. 1. Percentage of the biclusters extracted by different biclustering algorithms for different p-values for
the two datasets : (a) Yeast Cell Cycle and (b) Saccharomyces cerevisiae

Figure 1 shows the percentage of extracted biclusters for different adjusted p-value (p=5%;
1%; 0.5%; 0.1%; 0.001% and 10~1°) for the Yeast Cell Cycle and the Saccharomyces cerevisiae
datasets. The p-values (the enrichment degree) of the biclusters extracted by the LSM algorithm
are measured using the web tool GOTermFinder [6,13]. Regarding the other biclustering algo-
rithms, the percentage of extracted biclusters were taken from [16, 23].

It can be noted that the majority of the algorithms have rather low percentage. For the Yeast
Cell Cycle dataset (Figure 1 (a)), 53% of the biclusters extracted by LSM are statistically significant
with a p-value lower than 10~1%%, while only 62%, 31% and 22% of the biclusters respectively
extracted by Bimax, ISA and OPSM are statistically significant with a p-value lower than 0.001%.
For the Saccharomyces cerevisiae dataset (Figure 1 (b)), 72%, 80% and 88% of the biclusters
respectively extracted by Bimax, ISA and OPSM are statistically significant with a p-value lower
than 0.001%. Only LSM reaches very low values. Indeed, 100% of the biclusters extracted by our
algorithm are statistically significant with a p-value lower than 10~10%.

Table 7 and 8 extend the previous analysis and present the most significant GO terms of a
random bicluster extracted by the LSM algorithm, respectively for the Yeast Cell Cycle and the
Saccharomyces cerevisiae datasets. The columns represent the ontology structures (Biological
process, Molecular function and Cellular component). The rows show the significant GO terms,
the involved number of genes and the biological enrichment degree provided by the p-value.
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Table 7 presents same shared GO terms of a bicluster of 9 genes. Same for Table 8, it presents
same shared GO terms of a bicluster of 155 genes. The first row of the first column in Table 7
indicate that all the bicluster genes (9 genes) belong to the transport biological process, and the

statistical significance provided by the p-value is equal to 3.05e 6.

The results show that there are, for the three GO structures, several processes identified by
large groups of genes with high enrichment degree (low p-value). It can be deduced that the
integration of the biological knowledge in the search process improves the performance of the

proposed LSM algorithm to discover biologically relevant biclusters.

Biological process

Molecular function

Cellular component

transport
9 genes
3.05¢7%¢
transmembrane transport
6 genes
3.99¢7%¢
establishment of localization
9 genes
4177
localization
9 genes
1.26e7%°
metal ion transport
4 genes
3.92¢7%

transmembrane transporter
activity

9 genes

7.30e 12
transporter activity

9 genes

6.18e7'!

substrate-specific transmembrane

transporter activity

7 genes

6.57¢ %8
substrate-specific transporter
activity

7 genes

2.24e "7

integral component
of membrane

9 genes

41177
intrinsic component
of membrane

9 genes

4.41e7°7
membrane part

9 genes

4.52¢7%
membrane

9 genes

4.73e™%

Table 7. Significant GO terms in the three ontology structures of a bicluster extracted by the proposed LSM
algorithm for the Yeast Cell Cycle dataset

Biological process

Molecular function

Cellular component

cytoplasmic translation
92 genes

15113

translation
99 genes

1.30e %8

peptide biosynthetic process
99 genes
2.25¢7%8

peptide metabolic process
99 genes

7.35e %7

organonitrogen compound
biosynthetic process

101 genes

1.29e %

ribosome biogenesis

70 genes

7.74e 4

structural constituent of
ribosome
95 genes
3.46e7107
structural molecule activity
99 genes
2.37e7%

cytosolic ribosome
95 genes
2277120
cytosolic part
95 genes
419104
ribosomal subunit
95 genes
1.18e~ 102
ribosome
95 genes
1.36e7%0
intracellular
ribonucleoprotein complex
111 genes
8.41e ™
cytosolic small
ribosomal subunit
49 genes
3.47¢™%

Table 8. Significant GO terms in the three ontology structures of a bicluster extracted by the proposed LSM
algorithm for the Saccharomyces cerevisiae dataset
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4 Conclusion

In the present work, a biclustering algorithm based on a local search method characterized by
its simplicity is proposed. The algorithm input data are mainly the gene expression matrix and
the biological similarity matrix. The gene expression matrix presents the expression level of the
gene set under the condition set of a dataset. The biological similarity matrix is calculated by the
mgeneSim function of the R package GOSemSim and represents the biological similarity measure
values between the pairs of the gene set.

The main goal of the biclustering algorithm is to extract biologically relevant biclusters of highly
correlated genes. Thus, two criteria have to be optimized. A statistical criterion based on the co-
herence between bicluster genes and a biological criterion based on the biological relevance of
these genes. So, two distinct measures are considered. The biological similarity measure eval-
uates the biological relevance of the bicluster genes but not the conditions. Contrariwise, the
correlation measure tries to find interesting patterns in the biclusters, considering both genes and
conditions. For that, the search process treats separately the gene part and the condition part.

In order to evaluate the capacity of the proposed method to extract relevant biclusters and to
analyze the influence of the integration of biological knowledge in the search process, an exper-
imental study is performed using real data. These experimentations show that the LSM method
extracts biclusters with a slightly smaller size than that of the initial solution biclusters. In contrast,
the LSM method allows to improve the correlation between their genes. This method allows also
to increase the percentage of enriched biclusters extracted as well as the number of enriched Go
terms per bicluster.

As a consequence of the results, it can be deduced that the proposed LSM algorithm allows
to extract biologically relevant biclusters with highly correlated genes. Hence, the importance of
the integration of the biological knowledge in the search process to improve the performance of
the algorithm is demonstrated.

Given to the simplicity of the proposed local search method, its ability to extract relevant bi-
clusters and its easy integration in other algorithms, the future work will be focused on the study
of a hybrid algorithm combining an evolutionary algorithm with this method.
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