
Plan State Representation Using Heterogeneous Data Sources 

 
Santa Maiti, Plaban Bhowmick and Debnath Mukherjee 

 

TCS Innovation Lab, Kolkata, India, 

santa.maiti@tcs.com, plaban@gmail.com, debnath.mukherjee@tcs.com  

 

Abstract 

 

In this paper, we propose a framework that facilitates the use of heterogeneous data sources 

to represent a plan state. The traditional planners use monolithic predicate based schema for 

plan state representation where the world state is described as a set of predicates that are 

currently true. However, this approach is not efficient because, firstly, in reality, the world 

state can be obtained by aggregating information from different modular sources 

represented through multiple knowledge representation techniques and secondly, the 

performance of a planner can be affected when the size of state is enormously large. To 

overcome the stated limitations, we redefine the notion of a plan state and represent it as the 

combination of state predicates as well as the references to non-predicate data sources like 

databases, ontologies etc. The main challenge of our work is to handle plan state 

representation using distributed heterogeneous data sources, without altering planning 

algorithm in concern. Though we have based our idea around HTN planning, the approach 

is applicable to other planners, without any additional overhead. 

 

1. Introduction 
 

In the field of Artificial Intelligence, planning is the process of selecting and organizing 

actions by considering their expected outcomes or goals. In planning, the plan state denotes 

the state of the world and is represented as a set of predicates. During the planning process, 

the state of the system undergoes changes as determined by post conditions of the actions 

included in the plan. In existing approach, the plan state   is represented as Equation 1. 

                                (1) 

where    represents a grounded atom (predicate) that constitutes of a predicate head and a 

list of arguments. For example, a fact – “amount of available cash is 10,000” can be 

represented in the plan state as (avail-cash 10000). Here, avail-cash is the predicate head 

and 10000 is an argument. A planner has to select a set of actions (operators) and execute 

them in order to reach the goal state. The representation of current plan state suffers from 

shortcomings like practicability, modularity. 

 Practicability: In real world scenario, the world state is a collection of information 

available from different sources like databases, ontologies (e.g. travel ontology) [2], API 

calls (e.g. google maps API) [1] and web services etc. However, the available planners 

do not consider the heterogeneity of state information. 

 Modularity: Data sources follow modularity approach in general. E.g. weather 

information, road information, transport information can be maintained in a data sources 

of similar type (e.g. database system), but separate tables are used to keep those data. In 

this approach, occurrence of any change in one module, does not affect the other 

modules. The current plan state representation does not follow modularity approach as 

all information are presented together, using predicate-based schema. 

Scalability is also another issue in existing plan state representation. In practical cases, the 

state may be enormously large which in turn affects the performance of a planner. As an 

example, the HTN planner JSHOP2 [3] suffers from scalability problem for a plan state 

having large number of state predicates represented in a monolithic predicate-based scheme.  

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/
Vol. 3. No. 3 : pp.55-60 : isrp13-006

Copyright © 2013 Future Technology Press and the authors
55

mailto:santa.maiti@tcs.com
mailto:plaban@gmail.com
mailto:debnath.mukherjee@tcs.com


During planning the total plan state is loaded into memory, whereas only a subset is 

required at different points of execution. It leads to a failure in generation of a valid plan. 

So, in the purview of real life application requirement, there is a need to represent plan state 

as the combination of predicate based and non-predicate based state facts.  

In this work, our objective is to incorporate heterogeneous data sources in plan state 

representation. So, a planner has to handle the non-predicate based data along with the 

predicate based data and access state information on demand basis. Now, the challenge is to 

handle the overheads caused by non-predicate based data without changing the main 

planning process. Therefore, we propose an adaptation layer to handle the overheads. 

The specific contributions of this work are – 

 Modification in plan state representation: According to our architecture, a plan state is 

represented as the combination of logical predicates and references to non-predicate 

based data sources. 

 Modification in precondition: The precondition is represented as a logical expression of 

predicate based state facts as well as non-predicate based state facts. 

 Modification in operator’s effect: An operator’s effect part now refers to the 

modifications in plan state predicate(s) as well as modifications in non-predicate data 

source(s), if required. 

 Handling non-predicate data: The overhead (connection establishment, non-predicate 

based data precondition verification etc.) caused by non-predicate based data source is 

handled by adaptation layer without modifying the main planning process. 

Though the stated problem pertains to any planner, we base our realization on HTN 

planning paradigm. The objective of HTN planning procedure is to complete a set of tasks 

known as task network. HTN planner uses a set of operators to accomplish the primitive 

tasks and a set of methods to decompose a non-primitive task into smaller subtasks. The 

process of decomposition is repeated until it reaches to a set of primitive tasks which can be 

directly accomplished by the operators. The task network consists of task nodes and a set of 

precedence relations (execution ordering of two tasks). The HTN planning domain refers to 

a set of operators and a set of methods. For a given planning problem, a plan is a solution, if 

there exists a primitive decomposition of initial task network and the plan is a solution of 

that primitive decomposition [5]. 

SHOP2 is a domain-independent planning system based on HTN planning [4]. Our work is 

towards extension of JSHOP2, the Java implementation of SHOP2. JSHOP2 has a grammar 

(written in ANTLR language) that defines JSHOP2 language. ANTLR tool takes this 

grammar as input and generates JSHOP2 specific lexer and parser. Domain description and 

problem description are the inputs to JSHOP2. With the help of the lexer and parser, 

JSHOP2 parses domain description and problem description and obtains a domain specific 

planner. According to the problem the planner generates a plan in the given domain.  

Planning with external data sources are introduced through build-in predicates [6, 7, 8, 9]. 

The concept of information gathering is proposed in the modified version of UCPOP 

planner [8]. The primary difficulty of this proposal is that due to lack of clarity in the 

semantics of build-in predicates, soundness and completeness is not guaranteed. A 

modified version of SHOP HTN planning system used IMPACT’s multi agent environment 

in order to obtain the facilities to interact with external agents and different data sources 

[10]. However, the process requires modification in main planning algorithm.     

 

3. Solution Architecture 

 
In the introductory section, we have discussed the limitations regarding existing plan state 

representation. To overcome the limitations, we modify the architecture of planner as 

shown in Fig. 1. The proposed architecture accepts predicate based and non-predicate based 

data sources. An action results in modification of plan state during planning process. To  

Plan State Representation Using Heterogeneous Data Sources
Santa Maiti, Plaban Bhowmick, Debnath Mukherjee

56



 

Fig.1. Architecture of proposed approach 

avoid frequent non-predicate based data source modification overhead, we prefer to 

represent frequently changeable data (dynamic data) using predicate schema and slowly 

changeable or unchangeable data (static data) in non-predicate based data sources. For 

example, to represent available cash of a person, we prefer to use predicates, as an 

application of different operators may change its value frequently. On the other hand, if we 

want to represent an agent's information like agent name, address, contact number, charge 

etc. or the transport network of a city, we prefer to use database. However, selection of data 

source depends on the user. The data from predicate or non-predicate based data sources are 

supplied to planner through adaptation layer. Problem description and domain description 

are two inputs to the adaptation layer. Problem description contains the initial state 

information and the task network. Domain description contains different actions. The 

working methodology of the proposed architecture is explained below. 

1. To accomplish a task in task network, a planner unifies the chosen task with methods’ 

head (for non-primitive task) and operators’ head (for primitive task). Unified method(s) 

or operator(s) are passed to the adaptation layer. 

2. The adaptation layer then verifies the precondition of the method(s) and operator(s), 

with respect to the current plan state. A precondition is a logical expression of predicate-

based facts and non-predicate based facts. So, its satisfaction depends on whether there 

are facts in plan state matching the constituents of the logical expression. If there are no 

such fact in plan state, the truth value of precondition becomes false, otherwise true. 

3. The set of predicates in plan state verifies logical precondition. For non-predicate based 

precondition, adaptation layer connects the specified data source and checks that the  

data present in the data source can satisfy the precondition or not. For successful 

verification, the adaptation layer passes all possible substitutions (grounded value) that 

satisfy the precondition to the planner. 

4. A planner assigns the grounded value to the uninstantiated argument list. 

5. Next, in case of method, the planner adds the decomposed task list of that method to the 

remaining subtask network. For operator, the planner passes the control again to 

adaptation layer. 

6. Operators’ effect part contains deletelist and addlist. If the deletelist/addlist refers to a 

modification in plan state predicate(s), then the adaptation layer modifies the predicate(s) 

accordingly. Otherwise, a planner checks the permission of modification for non-

predicate data sources (in the case of dynamic data maintained in non-predicate based 

data sources). If it is permitted and required, the adaptation layer connects to the non-

predicate data sources and modifies (add or delete) the data accordingly. 

7. Steps 1-6 are repeated until the goal state is reached or all tasks of task network are over. 

The process also exits if no action can accomplish the remaining tasks. 

Plan State Representation Using Heterogeneous Data Sources
Santa Maiti, Plaban Bhowmick, Debnath Mukherjee

57



4. Implementation Details 

 
Incorporation of heterogeneous data sources in planning system requires significant 

modification in grammar rule as well as in domain and problem description. The 

modifications are suggested considering database as the non-predicate information source. 

 

Modification in Grammar Rule: All the keywords (e.g. call, imply) and grammar 

terminals (e.g. :method, :sort-by) used by problem definition and domain definition are 

mentioned in JSHOP2 grammar [3]. We add a new grammar terminal ‘:import-db’ to 

differentiate database information from the state information represented by predicate based 

schema. Any logical expression that starts with :import-db refers to a database. 

 

Modification in Problem Description: With the modification the plan state   becomes,  

                                   (2) 

where    represents logical atom and     represents database atom. In order to access data 

from database we need to mention server name, database name, table name, driver settings, 

user name and password in database atom. User name and password are required for user 

authentication purpose. Otherwise an unauthenticated user can make change in provider’s 

database. Syntactically database atom is represented as,  
(:import-db server_name db_name driver_settings username password)  

When the adaptation layer gets a predicate while reading the problem description, it checks 

whether it is used by the domain or not. If it is used, the predicate is directly added to the 

plan state, else discarded. If the adaptation layer finds a reference to database, it establishes 

a connection with that database with the help of the details provided in database atom. 

Adaptation layer adds the connection to the plan state. This connection is used in a later 

stage of the planning process. The complete plan state is passed to the planner at the initial 

stage of planning.  

 

Modification in Domain Description: The domain description also requires some 

syntactic, operational modifications. 

 

Modification in Precondition: Both method and operator have a precondition part     
represented as,  

                                                          (3) 

                                                              
                                                                              
                                                        (4) 

Here,    represents the logical precondition which is actually a logical expression      or 

first satisfier precondition or sorted precondition. Precondition            compels planner 

to consider only the first set of bindings with respect to plan state that satisfies    [3]. The 

logical expression can be a logical atom or any complex expression of conjunctions, 

disjunctions, negations, implications, universal quantifications, assignments, or call 

expressions [3]. We represent the modified logical expression as Equation 5.  

                                                                   
                                                                              
                                                                       (5) 

Here, a database atom consists of a    head and an argument list. The    head contains 

server name, database name, driver setting and the table name. The argument list of    

refers to the uninstantiated variables. This uninstantiated argument list is instantiated with 

the values obtained from database tables. If we want to fetch data from database table with 

Plan State Representation Using Heterogeneous Data Sources
Santa Maiti, Plaban Bhowmick, Debnath Mukherjee

58



restriction (some specific value for a particular column), we have to mention the column 

name. Otherwise, mentioning column names is optional. The variables of    are substituted 

after precondition checking. Syntactically the basic database precondition is represented as, 

(server name:db name:driver settings:table name arg1[/col1] ... argm[/colm]). 

When the adaptation layer reads this basic database precondition it uses the already 

established connections and obtains data from databases by executing a sql query –  
SELECT * FROM table name WHERE colk = argk. 

The plan state may contain more than one predicate that satisfies the precondition. The 

logical expression can filter those predicates by applying restrictions (call, sort-by etc.). 

For example, the logical expression starts with sort-by, sorts the predicates on some 

arguments mentioned in argument list and passes the top most predicate to planner. In case 

of database precondition, these restrictions are handled by formulating equivalent sql query. 

We give an example of such precondition and equivalent sql query. 

sort-by database precondition: 
(:sort-by ?col < (server name:db name:driver settings:table name arg1[/col1] ... 
argm[/colm)). 
Equivalent sql query: 
SELECT * FROM table name ORDER BY col ASC; 

 

Modification in Effect: Other than precondition part, syntactic modification is also required 

in operator’s effect part that is in addlist and deletelist. It can change database entry, 

although, we prefer to keep static data in database table and therefore no modifications are 

required (insert and delete). Addlist can refer to an update and addition of value in database 

table and deletelist may refer to a deletion of data in database table. Syntactically, they are 

represented as similar database precondition expression. 
(server name:db name:driver settings:table name arg1[/col1] ... argm[/colm]). 

Here, server_name, db_name, driver_settings, table_name follows the same notation as 

mentioned earlier. If the adaptation layer encounters a predicate in addlist or deletelist, it 

adds or deletes corresponding predicate in plan state. If it refers to a database record, 

adaptation layer first checks the write permission of that database. If permitted, for addlist 

the adaption layer executes equivalent sql query, 
INSERT INTO table name VALUES (arg1, ..., argm); 
And for delete list following query is executed. 
DELETE FROM table name WHERE colk = argk;  
 

6. Discussion 
 

The aim of our work is to use the heterogeneous data sources in a plan state, fit for real life 

application. To substantiate the usability of the proposed approach, we have conducted an 

experiment on city tour and travel domain using JSHOP2 [3] planner. The domain consists 

of various methods and operators for selecting agent or online booking, selecting flight, 

booking hotel, visiting point of interest, watching movie, shopping and withdrawing cash. 

The problem description consists of plan state and a task network specifying consecutive 

tasks of booking ticket, accommodation, visiting point of interest, watching movie, 

shopping and withdrawing cash. As a plan state, nine different types of information about 

agent, ATM location, flight, hotel, online booking, point of interest, restaurant, 

entertainment, shopping and some general information e.g. start time of planning, initial 

location, available cash etc. (total 748 facts) are presented. In practical scenario, this 

information are available in different sources. Therefore, we use nine different tables (agent, 

ATM location, flight, hotel, online booking, point of interest, restaurant, entertainment, 

shopping) to maintain different types of information. MYSQL database is used for this 

purpose. We represent the general state information using predicate based schema. This 

type of plan state representation supports practicability as well as modularity. We observed  

Plan State Representation Using Heterogeneous Data Sources
Santa Maiti, Plaban Bhowmick, Debnath Mukherjee

59



that the planner generates a valid plan using this type of plan state representation. In real 

life scenario a plan state can be enormously large. However, most of the programming 

languages and tools have a bytecode limit, which means for successful compilation, the size 

of a single function or method must be less that limit. Particularly, in our test case, when we 

used only predicate-based schema for plan state representation, the planner failed to create 

any plan and threw an error – “code too large” as a single java method cannot handle more 

than 64KB of code. Therefore, we can say our proposed approach can also resolve the 

scalability issue for a plan state having large number of state predicates. 

 

6. Conclusion 

 
In this work we point out that the existing planner suffers from practicability, modularity 

and scalability issues with respect to plan state representation. As the solution of this 

problem, we propose to represent plan state as the combination of predicate based and non- 

predicate based heterogeneous data sources. Our solution overcomes the limitations but it 

also has some disadvantages. As the planner depends also on non-predicate based data, 

each step of planning, data need to be fetched, which may fail sometime due to the 

unavailability of connection. If we consider ontology, we have to take care of schema 

mapping techniques. Moreover, inclusion of non-predicate based data will demand extra 

time for planning due to data fetching overhead. But, in contrary, the solution offers a 

modular and scalable approach for plan state representation. Moreover, it is a useful 

solution for many real life applications where data gets collected from different and 

distributed sources. Till now we have only considered the MYSQL database. In future, we 

plan to incorporate the feature of database portability, so that we can support various 

database vendors. Hibernation can be used for this purpose. We also plan to integrate 

ontology, API and web service information in the planner as future enhancement. 

 

7. References 

 
1. Google Maps API, Google Developers. Accessed on: March, 2013. https://developers. 

google.com/maps. 

2. Semantic Web Authoring Tool/Ontologies. Accessed on: March, 2013. www.swat 

project.org/ travelOntology.asp. 

3. Ilghami, O. Documentation for JSHOP2. Technical report. Department of Computer 

Science, University of Maryland (2006). 

4. Nau, D. et al. SHOP2: An HTN Planning System. Journal of Artificial Intelligence 

Research, Vol 20, pp. 379–404 (2003). 

5. Sohrabi, S et al. HTN Planning with Quantitative Preferences via Heuristic Search. In 

Eighteenth International Conference on Automated Planning and Scheduling (ICAPS) 

Workshop on Oversubscribed Planning and Scheduling, Sydney, Australia, (2008). 

6. Etzioni, O. et al. An Approach to Planning with Incomplete Information. In Proc. 3rd 

Int. Conf. on Principles of Knowledge Representation and Reasoning. Vol. 20, pp. 

379–404 (2003). 

7. Golden, K. et al. Omnipotence Without Omniscience: Efficient Sensor Management 

for Planning. In Proc. of AAAI (1994). 

8. Knoblock, C. A. Building a Planner for Information Gathering: A Report from the 

Trenches. In Proc. of AIPS (1996). 

9. Friedman, M., and Weld, D. S. Efficiently Executing Information-Gathering Plans. In 

Proc. of the Int. Joint Conf. of AI (IJCAI), pp. 785-791 (1997). 

10. Munoz-Avila, H. et al. IMPACTing SHOP: Foundations for Integrating HTN Planning 

and Multi-Agency. Technical report. UM Computer Science Department (2000). 

Plan State Representation Using Heterogeneous Data Sources
Santa Maiti, Plaban Bhowmick, Debnath Mukherjee

60


