
Optimized Communications on
Cloud Computer Processor by Using Parallel Genetic

Algorithms and Parallel Computing

Nicolas Lassabe

ONERA - The French Aerospace Lab
F-31055, Toulouse, France
nicolas.lassabe@onera.fr

Abstract
Cloud computing and multi-core processors will change the way we program and use
computer. This paper describes the benefits that cloud computing can obtain from
optimized communications by parallel genetic algorithms. Chips with multi-core processors
are very current and the performances of theirs applications depend a lot on their
performances of communication between each process and applications. We show that how
the performances could be easily multiplied by two with an optimization by parallel genetic
algorithms. We applies this method for the Intel's single-chip cloud computer (SCC), a 48-
core processor. This method could be applied to all cloud computers.

1. Introduction
The Intel's single-chip cloud computer (SCC) is a 48-core processor . The performances 
of the communications between the cores depends on theirs positions on the processor. For
a same parallel application on the SCC, the distribution of the processes on the cores could
impact the general performance . The goal of this paper is to show the possibility of
optimizing the communications by changing the positions of processes on the cores. For
this, we use benchmarked applications by experts and meta-heuristic optimization methods
like parallel genetic algorithms.

2. Background: The SCC's Communications
The cores on the SCC are distributed on a grid of 6x4 tiles (Fig 1). Each core is composed
of two cores .  The pipes of communication are also represented with a grid of 6x4 and
each core is connected to one node of this grid. Each core can communicate directly with
another core. During the communication between two cores, the message are send to the
next tiles on the same row first, then finish on the tiles on the same column. If two cores are
farer from each other on the grid, the communication will be slower. Also, the long
communications have more probability that their pipes of communication are used by other
cores at the same time.

Based on this expertise, we propose a fitness function f to evaluate the global

performance of a parallelized application. For this, we measure the quantity of kB/s q i,j of
data exchanged for each communication between two processes of this applications on
different cores and we add the results to each nodes affected by the communications. We

compare the quantity of data transited between each node ni,j of the grid (eq 1). The
maximum of transited data by a node of the grid is the value of fitness (eq 2).

ni,j= ∑

c=0

nbcom

qi,jc

 (eq 1) f=max (ni,j) (eq 2)

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/
Vol. 3. No. 3 : pp.49-54 : isrp13-005

Copyright © 2013 Future Technology Press and the authors
49

The challenge here is to have a better repartition of the processes in order to keep a good
execution time and to minimize the fitness function (eq 1). To optimize the execution , we
propose to have an uniform repartition of the processes on the grid. The communications
between two processes on the same tile do not affect the performance of the
communication. Moreover, we limit the number of processes by tiles to have a good
execution and repartition of the processes on all the tiles.

3. The Parallel Genetic Algorithms
To optimize the results, we use parallel genetic algorithms . The Open MIP library     is
used to exchange data among the processes. This library could use with all cloud computers
and clusters.
The population of the genetic algorithms is composed of a list of positions of the processes
on the cores of the SCC. Our genetic algorithm uses the model master-slave to parallelized
the algorithm . The master executes the main loop of genetic algorithm and sends the
evaluation job of the fitness function to different slaves. Each slave receives a part of the
population to evaluate and send back their results to the master.
The operators: A mutation function can change randomly the position of processes. A
crossover function mixes two lists of applications with a random number cross-nodes.
To select the individuals of the population, we use tournament selection. Beside it, we use
the fitness function previously describes to evaluate an individual (eq2).

4. Data and Experiments
For the experimentations, we use an application composed of 112 independent processes
that communicate together. Each process can have a large quantity of data to exchange with
different processes. This experimentation is from a real application used on the 48core SCC
processors. Similar experimentations could be found in theses papers . The positions of 
the processes on the core change dramatically the performance (Fig. 5).

To optimize the evolution, we need to find the parameters that optimize the fitness function.
The ideal percentage of selection population that gives good results is between 50% and
100%. For that of mutation should be between 1% and 100%. We run two hundred

Fig 1: SCC’s Architecture : a grid of 6x4 tiles composed of two cores . Example of
communication from the title (0,0) to the tile (4,2). The cores (1,0),(2,0),(3,0), (4,0), (4,1)
and (4,2) are affected by the communication. To communicate from the tile (4,2) to the tile
(0,0), the cores (3,2),(2,2),(1,2),(0,2) and (0,1) are affected.

Optimized Communications on Cloud Computer Processor by Using Parallel Genetic Algorithms and Parallel Computing
Nicolas Lassabe

50

experiments with 10 different values of selection and 20 different values of mutation
distributed equitably. After these serial of experiments, we subtract the best fitness (the best
fitness function was 3577, means 3577kB/s is maximal quantity of data exchange between
two cores at the same moment) to the 200 fitness results (optimized values are between
3577 and 4822) (Fig. 2). We get results from 0 to 1245 after this operation of subtraction.
These results shows the impacts of the parameters on the evolution. The size of population
used was 48000 individuals.

From previous experimentations, we obtain a couple of values for the selection and the
mutation where the fitness function give good results (fitness under 3600, closed of 0 on the
Fig 2). The figure 3 give the distribution of these couples of values.

Fig 2: 200 experimentations to evaluate the influence of the mutation and selection
parameters: the selection value starts from 50% to 100% by increment of 10. For each
value of the selection value the mutation increments also of 5 from 1% to 100%. This show
that the parameters are very important to have a good performances (diff 1245kB/s)

Fig 3: Couples of values for the selection and the mutation parameters where the fitness is
under 3600.

Optimized Communications on Cloud Computer Processor by Using Parallel Genetic Algorithms and Parallel Computing
Nicolas Lassabe

51

5. Results
From the first results (Fig 2 and 3), we obtain that 75% of selection and 65% of mutation
should converge for these parameters. With a size of population of 128000, we improve a
little result of the fitness : 3573 (Fig 4) This experiment was done on a 48 core cluster.

To visualize the impact of the optimization of the position of the processes on a cloud
computer like the SCC. We propose to display the quantity of data using the difference pipe
of communication. On the figure 5.A, the positions of processes are random. We can see
the pipes in black are larger. This means that a lot of data are transfered through these
pipes and the communications are slower. On the figure 5.B, the same processes with
optimized positions, the communication are more distributed and the communication is
faster.

Fig 4: Evolution of the fitness function from generation 0 to 4000. The blue line is the
evolution of fitness of the best individual. The red line is the evolution of the fitness of the
best individual of the population (they are different from the blue line because we do not
keep the best individual in the population). The green line is the evolution of the average
fitness of the population.

Fig 5A On the right, the communication of the SCC are not optimized. The exchanges of
data are concentrated in the pipe in black (Fitness around 7000). Fig 5B On the left, the
communication are optimized (Fitness 3573). The performance are two times better.

Optimized Communications on Cloud Computer Processor by Using Parallel Genetic Algorithms and Parallel Computing
Nicolas Lassabe

52

Notice the big difference of the size of pipes. This is because the pipes are much longer on
the figure 5A. On the fig 5B the number of nodes that is affected by the communications
are less. The communications are shorter and better optimized.

Due to the big quantity of data, the speed-up we get on 48 cores cluster is between 11 and
17 (Fig. 3). To augment the performance of the parallel algorithms, we propose to compress
the data sent from the master to the slaves. The data (the list position of processes) can be
easily compressed.

6. Conclusions
The cloud computer will change the way we program¹¹. This paper shows possibility to
optimize the communication of the applications by using parallel computing and cloud
computing by using parallel genetic algorithms. Also show how this method could be
improved by selecting the good parameters.

The next step will be to improve the performances of the method by compressing the data
exchange between the master and the slaves. It could be also interesting to see if it is
possible to apply this method in real time. We may be able to identify the rules from our
experiments to affect a better position directly in next step. We plan also to apply our
method of optimization of the position of the processes on different cloud computer like the
TilePro¹¹ to validate the concept.

Acknowledgements:
The author would like to thank Intel for granting an access to the SCC as part of the MARC
program.

Our parallel genetic algorithm is executed on a 48 core cluster and the speed up is between
11 and 17. The process of optimization cloud be improved by compressing the size of data
exchange between the master and the slaves.

Optimized Communications on Cloud Computer Processor by Using Parallel Genetic Algorithms and Parallel Computing
Nicolas Lassabe

53

7. References
1. Intel Labs, “SCC external architecture specification (EAS),” Intel Corporation Tech.

Rep., May 2010.
2. “The SCC programmer’s guide,” Intel Corporation, Tech. Rep., January 2012.
3. P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis and

benchmarking of the intel SCC,” in Proceedings of the 2011 IEEE International
Conference on Cluster Computing, ser. Cluster ’11. Washington, DC, USA: IEEE
Computer Society, 2011

4. E. Cantu-Paz and D. E. Goldberg, “Efficient parallel genetic algorithms: Theory and
practice,” in Computer Methods in Applied Mechanics and Engineering. press, 2000

5. E. Cant-Paz, “A survey of parallel genetic algorithms,” Calculateurs paralleles, vol. 10,
1998

6. M. Nowostawski and R. Poli, “Parallel genetic algorithm taxonomy,” in Proceedings of
the Third International. IEEE, 1999

7. H. Mhlenbein, “Evolution in time and space - the parallel genetic algorithm,” in
Foundation of genetic algorithms Morgan Kaufmann, 1991

8. The librairie Open MPI. Available: http://www.open-mpi.org/
9. W. Puffitsch, E. Noulard, and C. Pagetti, “Mapping a multi-rate synchronous language

to a many-core processor,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’13), Philadelphia, Pennsylvania, USA, 2013.

10. Tile processor architecture overview for the Tilepro series, Tilera Corporation, 2013
11. Shekhar Borkar, Andrew A. Chien The Future of Microprocessors, Communications of

the ACM, Vol. 54 No. 5, Pages 67-77 2011

Optimized Communications on Cloud Computer Processor by Using Parallel Genetic Algorithms and Parallel Computing
Nicolas Lassabe

54

http://www.open-mpi.org/

