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Abstract 
 
Smart systems and artificial intelligence technology are becoming increasingly popular and 
are continuously finding more applications in real-life situations. Many systems require 
human-computer interaction and the natural language interface. One of the major issues in 
speech recognition systems is their performance in real world (noisy) environment. Over 
the past decades many techniques for noise reduction were developed. Motivated by human 
auditory processing, and it is well known that humans are remarkably good at detecting 
speech in the background noise, we propose a noise reduction technique based on a 
biophysical cochlear model. Using a model of signal reconstruction from the cochlear 
output, we observed an improvement in the quality of noisy speech and a significant 
increase in speech recognition performance. 
 
 
1. Introduction 
 
In a natural environment speech signals are almost always immersed in ambient noise and it 
is essential for speech processing systems to apply some noise reduction techniques to 
extract the desired speech signal. Noise reduction is a very challenging problem since the 
characteristics of a noise signal vary significantly in different environments and moreover 
in time. Over the past decades many approaches have been developed, including spectral 
magnitude estimation [1][2], signal subspace [3],[4], Wiener filtering [5],[6], Kalman 
filtering [7],[8] and hidden Markov models [9],[10]. Generally, their noise reduction 
performance was evaluated by assessing the improvement of signal-to-noise ratio (SNR), 
subjective speech quality or automatic speech recognition (ASR) performance. Noise 
reduction algorithms typically achieve noise reduction by introducing some distortion to 
speech signal, and some, like the subspace method, are even explicitly formulated based on 
the trade-off between noise reduction and speech distortion [5]. 
 
Smart systems and artificial intelligence technology are becoming increasingly popular and 
are continuously finding more applications in real-life situations. Many systems require 
human-computer interaction and the natural language interface. One of the major issues in 
speech recognition systems is their performance in real world (noisy) environment. 
Comparisons using many speech corpora demonstrate that word error rates of machines are 
often more than an order of magnitude greater than those of humans for quiet, wideband, 
read speech. Machine performance degrades further below that of humans in noise, with 
channel variability, and for spontaneous speech [11]. Motivated by human auditory 
processing, we propose a noise reduction technique based on a biophysical cochlear model. 
Biophysical cochlear models are generally developed using many simplified assumptions 
about the cochlear fluid dynamics and mechanics of cochlear microstructures. We use the 
model of Mammano and Nobili [12],[13], since it models the cochlea at a level adequate to 
the complexity of realistic cochlear structures. Thus it is logical to assume that, because of 
the model realism, it could closely resemble a response of the real human cochlea.  



Since this work is still in progress, we are here presenting only preliminary results and 
findings, but from what can be observed so far, applying this biophysical cochlear model to 
noisy speech and reconstructing the speech signal results with improvement in the quality 
of noisy speech and with significant increase in speech recognition performance. 
 
 
2. Biophysical Cochlear Model 
 
Many cochlear models have been developed in the past decades. These models can be 
roughly divided into biophysical models and signal-processing models [14]. Signal-
processing models typically use filtering operations to produce cochlea-like output (e.g. 
gammatone filterbank by Patterson et al. [15]). The filters are tuned to different frequencies 
with response shape and spacing inspired by psychophysical and psychological data. 
Biophysical cochlear models, such as the macromechanical and micromechanical cochlear 
models, seek to explain how the cochlea works through simplified assumptions about the 
cochlear fluid dynamics and mechanics of cochlear microstructures. For example, in the 
model of Netten and Duifhuis [16], mass of the cochlea, cross-sectional area of cochlear 
channels and the width of the partition are all assumed to be constant, and the stiffness 
exponentially decreases from the base to the apex of the cochlea. In micromechanical 
models, the cochlear partition is modelled more realistically.  
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Figure 1. Geometrical and physical parameters of the biophysical cochlear model 
 
In the model of Mammano and Nobili [13],[14], both mechanical and hydrodynamical 
aspects are treated at a level adequate to the complexity of realistic cochlear structures. It 
fits very nicely with experimental data and can explain some auditory system phenomena 
like two-tone suppression, two-tone distortion, otoacoustic emissions including 
spontaneous (SOAE), transient-evoked (TEOAE) and stimulus frequency otoacoustic 
emissions (SFOAE) [17]. Geometrical and physical properties of this model are shown in 
Figure 1. 
 
 
3. Noise reduction experiments and results 
 
For the passive cochlear model and pure tone input, discretized output of the model (shown 
in Figure 2) will consist of a series of sinusoids distributed along the basilar membrane 
(with peek amplitude corresponding to characteristic frequency location) and delayed in 
phase towards the apex of the cochlea. X-axis represents time, y-axis represents 
space/frequencies along the basilar membrane and z-axis represents normalized intensity. 



 
Figure 2. Basilar membrane response for a 2 kHz tone (passive model).  

 
In order to reconstruct the original sinusoid from the model output, a few simple steps can 
be applied: 1) correcting the model output by the delay in phase towards the apex; 2) 
integrating over BM space in order to obtain a single sinusoid; 3) dividing by an area of the 
travelling wave profile in order to obtain the correct amplitude. The method is described in 
more detail in [18]. Since any audio signal can be considered as a sum of sinusoid 
components, and we are here talking about linear cochlear system, superposition is valid 
and the signal can be reconstructed if the phase delay and the areas of travelling wave 
profiles are known for all frequencies/sinusoids.  
 

 
Figure 3. Example of speech signal reconstruction 

 
Figure 3 shows an example of speech signal reconstruction. It is clearly visible that very 
faithful reconstruction is possible - if the PESQ MOS (Perceptual Evaluation of Speech 
Quality Mean Opinion Score) [19] is used as a measure of quality, reconstructed signal will 
have a 4.49 PESQ score (maximum value for PESQ score is 4.5). 
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Applying this method on time-frequency response of the active model would not be 
mathematically correct, since the model is nonlinear and superposition is not valid and 
phenomena like frequency masking are present. But it was observed that, when applied to 
active cochlear model response of a noisy speech signal, this reconstruction method can 
result with improved signal quality (with some spectral enhancements and noise 
suppression). Reconstructed signal is obviously more similar to the one which human ear 
actually hears, and it is well known that humans are remarkably good at detecting speech in 
the background noise.  
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Figure 4. Noise reduction example: (a) clean speech and its spectrogram; (b) noise 
reduction for SNR=10dB – top panels noisy speech and its spectrogram, bottom panels 
noise reduced speech and its spectrogram; (c) noise reduction for SNR=0dB – top panels 
noisy speech and its spectrogram, bottom panels noise reduced speech and its spectrogram 



Figure 4 shows an example of white noise reduction for a test sentence from male speaker. 
Speech signal is first applied to the active cochlear model input and then reconstructed from 
the basilar membrane response. Two examples of noise reduction for SNR=10dB and 
SNR=0dB are given. For each example, both signal waveform and its power spectrogram 
are shown. It is clearly visible that the proposed technique results with reduction in noise 
levels. Level of improvement can be expressed with PESQ score – for the case when 
SNR=10dB, PESQ score was improved from 2.78 to 3.31, and for the case when 
SNR=0dB, PESQ score was improved from 2.02 to 2.31, or expressed in percentages 19% 
and 14% respectively. 
 
In order to evaluate the performance of the proposed technique more thoroughly, we have 
developed a speech recognition system. Our speech recognition system is based on 
continuous density HMM models, and is developed using the HTK toolkit. The speech 
material consists of 673 sentences in Croatian (5731 words) recorded by 12 male speakers 
from the texts of short weather forecasts for the Adriatic coast. It was recorded in quiet 
office and sampled at 16 kHz with 16 bits. Vocabulary size is 362 words. The data and the 
speakers were divided in two sets: one for training and one for testing. Acoustical 
modelling was made at phone level by continuous Gaussian density HMMs with 3 states 
(left-right topology) per phone and 6 mixture components per state with diagonal 
covariance matrices. Standard configuration of the HTK setup was used. Models were 
trained with MFCC (Mel-frequency cepstral coefficients) feature vectors of 39 elements (13 
static + 13 velocity + 13 acceleration coefficients) representing 25 ms segments of speech, 
every 10 ms. Bigram language model was used. 
  

SNR (dB) ASR ASR_NR 

clean 93,92 93,71 

25 92,87 93,08 

20 91,4 92,45 

15 81,13 90,57 

10 42,77 84,28 

5 4,82 65,41 

0 1,26 21,59 

 
        Table 1. Recognition rates (%)     Figure 5. Recognition rates (%) 
 
Table 1 and Figure 5 show the recognition results of the speech recognition systems with 
and without noise reduction, denoted as ASR_NR and ASR respectively. 
 
It can be observed that as the noise level increases, the recognition rates of the NR based 
system become significantly higher than the standard ASR system. The largest 
improvement in performance occurs for SNR=5dB, where recognition rate goes from 
4,82% to 65,41% when noise reduction technique was used.  
 
 
4. Conclusions 
 
As the technology advances, many modern intelligent systems will require natural language 
interface and thus speech recognition capabilities. One of the major issues in speech 
recognition systems is their performance in real world (noisy) environment. Motivated by 
human auditory processing, and it is well known that humans are remarkably good at 
detecting speech in the background noise, in this work we have proposed a noise reduction 
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technique based on cochlear processing of speech signals. Using a model of signal 
reconstruction from the cochlear output, we observed an improvement in the quality of 
noisy speech and a significant increase in speech recognition performance. This work is 
still in progress and it yet remains to be tested how the method performs in other types of 
noise, but results obtained so far are quite promising. 
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