
A Python-Modelica Interface for Co-Simulation
Jesús Febres, Raymond Sterling, Marcus Keane

Informatics Research Unit for Sustainable Engineering, Department of Civil
Engineering and Ryan Institute, National University of Ireland, Galway,

Ireland
j.febrespascual1@nuigalway.ie

Abstract

This paper presents a novel tool for data exchange between Modelica and a
growing open source programming language, Python, especially for co-
simulation purposes. This tool was developed using Python and targeted to
the Dymola IDE. However, general concepts can be translated to any other
language. A case study of a complex Modelica model is presented to
illustrate how the tool can be used for solving an inverse problem (i.e. model
calibration) that could not be possible using only Modelica.

Keywords: Python, Co-simulation, Interface, Inverse Problem

1 Introduction

Often, in modelling and simulation applications, manipulation of information
is needed for data pre/post processing. For our modelling and simulation tool
of choice, Modelica [1], it does not incorporate a suitable data pre-processing
tool and the Modelica development environments target simple data
visualisation rather than complex post-processing operations. This problem
becomes much more complex if this information has to be manipulated in
real-time (when the simulation is running), i.e. in co-simulation applications.
A solution for this problem is developing an interface between Modelica and
any good data processing tool/programming language in existence. In this
work Python was chosen as data processing environment which is widely
accepted by the engineering community as one of the best scripting and
programming languages and its use is widespread. The interface was
implemented using the same language and C.
This paper presents a novel tool for data exchange to/from Modelica,
especially designed for simulation-time (for this work we considered real-
time equivalent to simulation-time) purposes. Our tool, PyMo, is developed
as a library using a standard distribution of Python 2.7 [2] and targeted to the
Dymola IDE [3]. However, general concepts can be translated to any other
language. In order to ensure reusability, no additional modules/libraries were
used but just the standard ones present in most python installations. A case
study of a complex Modelica model is presented to illustrate the tool’s usage.

Sustainability in Energy and Buildings: Research Advances:
Vol 3: Sustainability in Energy and Buildings (SEB-14) Short Papers pp.20-30 : seb14s-005

ISSN 2054-3743 : http://nimbusvault.net/publications/koala/sebra
Copyright © 2014 Future Technology Press and the Authors

20

mailto:j.febrespascual1@nuigalway.ie

2 Python-Dymola interface

The idea behind the developed interface is to provide the modeller with the
ability to manipulate and exchange data with Modelica models mainly during
the simulation is running but also allowing data manipulation before and after
simulations. The interface is composed by two main parts, namely python
side and Modelica side, which are explained in the following sections.

3 Python side

The main elements of this library were developed based on necessities that
aroused during our daily work with Modelica using Dymola as a
development environment. Firstly, data obtained from Modelica simulations
had to be processed for a deeper analysis. Secondly, tables in initialization
file (typically ‘dsin.txt’), used by Dymola to run Modelica simulations
needed to be parsed for improving their usability in Python. Finally, values
had to be sent (received) to (from) Modelica; in some cases in order to
exchange data between Modelica and a fault detention engine in real-time;
and in other cases in order to reduce the computational cost when inverse
problems have to be solved by using iterative methods. An overview of the
whole package is presented below.

3.1 Getting results from Modelica

Every time a simulation is run, Modelica generates a results file. In the
particular case of Dymola, in its standard configuration, it produces a .mat
file. For processing these .mat files, we developed a package based on an
open source project named DyMat [4]. However, we provided modifications
trying to get more simplicity and efficiency to satisfy our necessities.
The module developed, matFile.py, contains the class matFile that needs the
.mat file path to be instantiated. The main methods are described in Table 1

3.2 Parsing dsin.txt file

With this package we can read and modify any parameter value in the dsin.txt
file generated after Modelica translation (compilation) in Dymola.
The class for parsing is named dsinFile and needs the path to the dsin.txt to
be instantiated. Its main attribute and method are summarized in Table 2.

3.3 Dymola object

dymolaModel is the main class of the tool. It needs three parameters to be
instantiated. The ‘moFile’ parameter is the path of the Modelica file (.mo
format) containing the model. The ‘modelName’ parameter is the name of the
model to be simulated. And the ‘dirResults’ parameter is the path of the
working directory on which the results will be stored.
The Dymola Object allows for the performing Modelica simulation in two
different modes namely the non-real-time mode and the real-time mode.

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

21

The non-real-time mode is used when no communication between Python
and Modelica is needed during simulation. For this mode, there are two
important attributes: ’parameters’ and ‘results’, and one main method,
simulate. See Table 3.
In cases when we need to communicate with Modelica during simulations,
the real-time mode must be used. In this mode the instantiated object will
have four additional methods (described in Table 3) and the simulation
method will change its behaviour.
The non-real-time mode can be used for any Modelica model without any
additional Modelica package. However, when the real-time mode is required,
an additional package is needed in order to establish and synchronise the
communication between Python and Dymola/Modelica.

4 Modelica side

In addition to the Python library we developed a Modelica package in charge
of establishing and synchronising communications with python when a
simulation is running in the real-time mode. This package contains the main
element PyCom and a few more functions that PyCom needs to work. The
PyCom element can work as sender of information to python, receiver of
information from python or controller to synchronise the data exchange. Its
operation mode will depend on the value of the parameter named ‘comType’.
The behaviours of PyCom can be described, briefly, as follows:
• sending/receiving function: it has an output/input connector that can

be used to send/receive values to/from Python;
• controlling function: when this function is selected there would be no

connector, however, one block of this type has to be placed in the
model to be guarantee synchronisation during data exchange.

5 Non-real-time mode example

In order to illustrate how the tool works in this mode, the heating coil model
in Figure 1 taken from [5] is used. In this case, model inputs are taken from a
data file (data). HX is a water-air heat exchanger without condensation and it
needs six input variables. Three of them to define state of the incoming air:
temperature (CCo_Temp), relative humidity (CCo_RH) and mass flow rate
(supplyMflow). Another two for the state of the incoming water: temperature
(HC_wTemp) and mass flow rate (HC_wMflow). And the valve opening
signal (HC_openingSignal) as control signal. We assume that HC_wMflow is
parameter (mflow0_w) since incoming water mass flow rate is controlled
with HC_openingSignal.
In non-real-time mode, we can modify parameter values, simulate the
Modelica model and collect results to be used inside Python (see code in
Appendix II). However no data exchange during simulation is allowed.
Figure 2 and Figure 3 show the plots generated with the Python code
described in Appendix II. To generate Figure 2, only experiment parameters

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

22

were modified. In Figure 3 both experiment and model parameters were
changed. The same steps were followed in the python code for both cases.

Figure 1. Non-real-time mode. Modelica model

Figure 2. Non-real-time. Results plot with only

‘experiment’ modified
Initially, the Dymola model object was created then a simulation is run using
the desired parameters. Once the simulation is finished, the corresponding
plotting method is called and two plots are presented in the resulting plotting
window. Input (‘HX.Pi.T’) and output (‘HX.Po.T’) values of air temperature

HX

data

data.y[22]
CCo_RH

data.y[1]
CCo_Temp

airDensity
data.y[24]

supplyMflow

data.y[27]
HC_wTemp
mflow0_w
HC_wMflow

data.y[7]
HC_openingSignal

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

23

are shown on top and the three variables directly related with ‘mlow0_w’ in
the bottom plot.

Figure 3. Non-real-time mode. Results plot with

'initialValue' modified
Plots show how parameter values were passed successfully and how they
modified the outputs of the model simulation. One day was simulated in both
cases and ‘mflow0_w’ value changes from first simulation (Figure 2) to the
second one (Figure 3).

6 Real-time mode example

For this mode (Figure 4), the same model was considered but model inputs
and outputs are read from Python directly.
In order to link Python with the Modelica model, PyCom blocks should be
placed in the model. Six receiving blocks are needed. They represent the
model inputs: incoming air temperature (Ti_a), incoming air relative
humidity (RHi), air mass flow rate (mflow_a), opening valve signal
(opening), incoming water temperature (Ti_w) and water mass flow rate
(mflow_w). One sending block (To_a) is used to send outgoing air
temperature values (HX.Po.T) to Python. In addition, as mentioned above, a
control block (Control) is placed to guarantee the communication
synchronization. All these blocks can be seen in Figure 4.
Outgoing air temperature and all inputs are known except opening valve
signal.
To illustrate the usefulness of our tool, a real example (solving the inverse
problem) with real data is presented. The idea is to adjust (and readjust) the
unknown input ‘opening’ by using the feedback error between the current
value of the study variable ‘HX.Po_T’ and its desired value ‘ref[t]’ taken
from the data in order to decrease the error below the tolerance ‘errorMax’

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

24

(Appendix III). Although it can be done considering a step-by-step approach
by running a Modelica simulation for every single iteration point, the
computational cost is reduced substantially if the whole iteration process is
done with just one Modelica simulation. Only data samples where air mass
flow rate is higher than 1.0 𝑘𝑔/𝑠 are considered because they represent when
the heat exchanger is working. Figure 5 shows how simulated values
(HX.Po.T) match with desired values (ref.x) for those samples where air
mass flow (mflow_a.x) rate is higher than 1.0 𝑘𝑔/𝑠.

Figure 4. Real-time mode. Modelica model

7 Discussion

One important use of the real-time mode comes from the fact that sometimes
Modelica not necessarily can solve inverse problems where model outputs
are known (i.e. measurements or observations on the plant) and inputs are
required (i.e. actuator signals), this is particularly true if there exist a high
nonlinearity in the system, for example when limiters, if-then-else statements,
or comparators are included in the model. Nonetheless, this problem can be
seen as a classic control problem. In this case, the error between known
outputs and actual outputs can be used as feedback to modify the inputs until
this error decreases below some fixed tolerance. In our approach, instead of
starting and stopping simulations for each iteration step, we can just run just
one simulation for the whole process by using the tool and the values are
adjusted iteratively, in simulation time during this one simulation. This
process was shown in the examples presented.
Another advantage of the tool is that it allows for use of the executable
generated by Dymola. That means that if there are several modellers
developing several different components, all of them can be used together
without disclose the source code. Finally, the tool can be used in cases where

HX

mflow_w

Control

To_a

opening

PyRec

Ti_a

RHi

Ti_w

mflow_a

HX.Po.T
HX_Po_T

ref

PyRecv

PyRecv

PyRecv

PyRecv

PyRecv

PyRecv

PyCtrl

PySend

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

25

an interaction between Modelica and any other M&S application is need,
provided that it can communicate with Python.

Figure 5. Real-time mode. Calculated and desired values

(above). Air mass flow rate (below)

8 Future work

Next step in this research is to generate a useful documentation of the whole
tool and improve the error handling. Once a stable version is developed, the
idea will be to translate it to an open source Modelica environment, as such
OpenModelica. At the end, Functional Mock-up Interface concepts will be
integrated in order to avoid the Modelica model modification.

9 References

[1] M. Association, “Modelica ® - A Unified Object-Oriented Language
for Systems Modeling Language Specification,” 2012.

[2] M. Pilgrim, Dive Into Python. 2004.
[3] Dassault Systèmes AB, Dymola - User Manual, vol. 1, no.

September. Lund - Sweden, 2012.
[4] J. Rädler, “DyMat,” 2013. .
[5] J. Febres, R. Sterling, I. Torrens, and M. M. Keane, “Heat Ventilation

and Air Conditioning Modelling for Model-Based Fault Detection
and Diagnosis,” in Building Simulation 2013, 2013, pp. 3513 – 3520.

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

26

10 Appendix I

Table 1. Main methods of matFile
Method Inputs Output

names() Not required Sorted list with the simulation variables
names

description(name1,
name2,…)

At least one
variable name

Dictionary containing the description and
the unit assigned inside Modelica for each
input variable

get(name) A variable name Dictionary containing a time series with
the resulting values for the input variable

plot([name11, name12,
…], [name21 ,name22,
…], …)

At least one
names list is
required

Plot window which contains a plot for
each list. The x-axis corresponds to the
simulation time in second

Table 2 Main attribute and method of dsinFile

Attribute/Method Inputs Output

parameters (Attribute)

Dictionary with the four tables
(‘experiment’, ‘method’,
‘settings’ and ‘initialValues’)
from dsin.txt

modifyParameters(
{name1: value1, name2:
value2, …})

Dictionary with the names
of the parameters that will
be modified and their new
values

Modified dsin.txt with the new
values

Table 3. Main attributes and methods of dymolaModel

Attribute/Method Inputs Output
parameters (Attribute) Dictionary containing the four

tables from the dsin.txt file.

results (Attribute)
It is a matFile object and is
created when the simulation
finishes

simulate(
{name1: value1, name2:
value2, …})

Dictionary with the
simulation parameters

Non-real-time mode: runs a
Modelica simulation with passed
parameters.
Real-time mode: starts the
simulation which will wait for a
run() or finish() method call

run(step) Real value.
Default = 1.0

Move ‘step’ seconds in the
simulation

setInputs(
{name1: value1, name2:
value2, …})

Dictionary containing the
variable names and the
values to be sent

Sends values from Python to
Modelica

getOutputs() Not required Dictionary with variable names
and their values

finish() Not required Finishes an active simulation

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

27

11 Appendix II

11.1 Python code for non-real-time mode example

1 # -*- coding: utf-8 -*-
2 from dymola import *
3
4 packageName = 'C:/ModelicaConference.mo'
5 modelName = 'ModelicaConference.offLineMode'
6 dirWork = 'C:/Work'
7 model = dymolaModel(moFile=packageName,
8 modelName=modelName,
9 dirResults=dirWork)
10
11 parameters = {'StartTime':0.0,
12 'StopTime':60.0*60.0*24.0}
13 model.simulate(parameters)
14 model.results.plot(['HX.Pi.T','HX.Po.T'],
15 ['HC_wMflow.y',
16 'HC_openingSignal.y',
17 'HX.Ho.mflow'])
18
19 HX_mflow0_w = model.parameters['initialValue']['HX.mflow0_w']
20 mflow0_w = 2.0*HX_mflow0_w
21 parameters = {'StartTime':0.0,
22 'StopTime':60.0*60.0*24.0,
23 'mflow0_w':mflow0_w}
24 model.simulate(parameters)
25 model.results.plot(['HX.Pi.T','HX.Po.T'],
26 ['HC_wMflow.y',
27 'HC_openingSignal.y',
28 'HX.Ho.mflow'])
29
30 del model

Code 1. Non-real-time mode. Python code
The python code starts calling our library and defining dymolaModel class
parameters in order to instantiate it (line 2 to line 9).
From line 11 to 17 a simulation is run just changing ‘experiment’ parameters,
such as ‘StartTime’ and ‘StopTime’. In lines 11 and 12 new parameter values
are passed. ‘StopTime’ is set in 86400 seconds, that means one day of
simulation. Next, a simulation with those values is executed. Once the
simulation is finished, the ‘results’ attribute/object is created and used to
generate a plot window with two plots, one for each list passed as argument
(see Figure 2).
In the code described above, just experiment parameters have been changed;
however, modifying model parameters is the point of this tool. Now, we are
going to modify ‘mflow0_w’ which was fixed in 1.5 kg/s, its new value shall
be two times the nominal mass flow rate of water in the heat exchanger
(‘HX.mflow0_w’). ‘HX.mflow0_w’ is read (line 19) and used to modify

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

28

‘mflow0_w’ parameter in lines 20-23. A new simulation is done using values
defined above. Same variables are plotted (see Figure 3).
Last line is used to delete the ‘model’ object thus removing any temporary
files used in simulations.

12 Appendix III

12.1 Python code for real-time mode example

from dymola import *

data = dataFile('C:/AHU09_Data.csv')
times = data.times()
labels = data.labels()
Ti_a = data[labels[1]]
RHi = data[labels[22]]
ref = data[labels[8]]
mflow_a = data[labels[24]]
Ti_w = data[labels[27]]

packageName = 'C:/ModelicaConference.mo'
modelName = 'ModelicaConference.inLineMode'
dirWork = 'C:/Work'
model = dymolaModel(moFile=packageName,
 modelName=modelName,
 dirResults=dirWork)

Code 2. Loading data Code 3. Model Instantiation
After importing our library the data is loaded (see Code 2). This is the same
data used in previous example (data block), however, in this case it is loaded
directly to python using ‘dataFile’ class which works with Modelica tables or
.csv files. As in the non-real-time mode the model is (Code 3).

n_mflow_w = 2.0
d_a = 1.22
parameters = {'HX.c_a':1006.0,
 'HX.c_w':4186.0,
 'HX.Ti0_a':6.3,
 'HX.To0_a':18.8,
 'HX.mflow0_a':d_a*(1.40+1.30/2.0),
 'HX.Ti0_w':82.0,
 'HX.To0_w':71.0,
 'HX.mflow0_w':0.47,
 'HX.r':0.9}
iMax = 50
errorMax = 0.1
alpha = 1e-2
starTime = 0.0
stopTime = iMax*(len(times)-1)
parameters.update({'StartTime':starTime,
 'StopTime':stopTime})
model.simulate(parameters)

HX_openingPP = {}
mflow_w =
n_mflow_w*parameters['HX.mflow0_w']
for t in times:
 if mflow_a[t]>1.0:
 model.setInputs({'Ti_a':Ti_a[t],
 'RHi':RHi[t]/100.0,
 'mflow_a':d_a*mflow_a[t],
 'Ti_w':Ti_w[t],
 'mflow_w':mflow_w})
 openingAux = 0.5
 for i in range(iMax):
 model.setInputs({'opening':openingAux})
 model.run()
 To_a = model.getOutputs()['To_a']
 error = ref[t] - To_a
 if abs(error) < errorMax: break
 else: openingAux += error*alpha
 HX_openingPP[t] = 100.0*openingAux
 else: HX_openingPP[t] = 0.0
model.finish()

Code 4. Starting the model Code 5. Solving inverse problem
Now, the model parameters are defined and then the ‘experiment’ ones. After
that, the model is started with the ‘simulate()’ method (see Code 4). The
model will not run a whole simulation like non-real-time example but will
wait for a ‘run()’ method call.
The idea is to adjust (and readjust) unknown input ‘opening’ by using the
feedback error between current value ‘To_a’ and desired values ‘ref[t]’ in
order to decrease the error below the tolerance ‘errorMax’ (Code 5).
Although it can be done by using a step-by-step Modelica simulation for
every single iteration point, the computational cost is reduced substantially if
the whole iteration process is done with just one Modelica simulation. The
first for loop swaps all data points, however, just points where air mass flow

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

29

rate is higher than 1.0 𝑘𝑔/𝑠 are considered for calculating ‘opening’ values,
that corresponds when the heat exchanger is working. Initially, all inputs are
set for current time ‘t’ by using ‘setInputs()’ method. For every iteration in
the second for loop, a new ‘opening’ value is used to run the model with
actual inputs values, then ‘To_a’ is extracted in order to compare it with the
desired value ‘ref[t]’. Next, the ‘opening’ value is calculated using the
resulting error. Best values of ‘opening’ are stored in ‘HX_openingPP’. At
the end the model is stopped with the ‘finish()’ method.

step = 60
parameters['StopTime'] = (len(times)-1)*step
model.simulate(parameters)
for t in times:
 model.setInputs({'Ti_a':Ti_a[t],
 'RHi':RHi[t]/100.0,
 'mflow_a':d_a*mflow_a[t],
 Ti_w':Ti_w[t],
 'mflow_w':mflow_w,
 'ref':ref[t],
 'opening':HX_openingPP[t]/100.0})
 model.run(step)
model.finish()
model.results.plot(['HX.Po.T','ref.x'], [mflow_a.x']))
del model

Code 6. Simulation with resulting values
In addition, a new simulation is run using ‘opening’ vales saved in
‘HX_openingPP’ (Code 6). In this part of the code, ‘run()’ method is called
using a 60 seconds step which is the sample time in the data file.

A Python-Modelica Interface for Co-Simulation
Jesus Febres, Raymond Sterling, Marcus Keane

30

