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Abstract : This paper presents a new approach to detect and isolate the current sensor 

faults, a doubly fed induction generator (DFIG) for a wind turbine application. And to 

detect the variable resistance faults. A method using an unknown input of multiple 

observers described via Takagi-Sugeno (T-S) multiple models. A bank of multiple observers 

scheme (DOS) generates a set of residuals for detection and isolation of sensor faults which 

can affect a TS model. A decision system is used to the process the residual vector to 

detection and isolation faults. The stability and the performance of the multiple models are 

formulated in terms of Linear Matrix Inequalities (LMIs). The approach is validated using 

Matlab software to modeling and simulation of a DFIG. 
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1. Introduction 

Since many wind turbines are installed at remote locations, the introduction of fault 

diagnosis and fault-tolerant control is considered a suitable way of improving reliability of 

wind turbine and lowering cost of repairs. As many wind turbines are installed earth and 

offshore, a non-planned service can be highly costly, so it would be beneficial if diagnosis 

could help the turbines to produce some energy from the time a fault is detected to the next 

planned service. A considerable research has been done on the modeling and control of 

wind turbines with DFIG [1,2,3]. Since monitoring the generator requires processing the 

current and measuring voltage, the first step should be dedicated to sensor fault diagnosis. 

That is why this issue is addressed here.  

In this paper, complete diagnosis system for stator current, as well as rotor sensors are 

designed. Wind turbines have nonlinear aerodynamics and this limits the use of a linear 

equation. Hence, an increase in interest in diagnosis wind turbines through nonlinear 

methods has been noticed in the last years to handle the nonlinearity of the generator speed. 

This is achieved either through the use of nonlinear models directly in the design or through 

the use of multiple models approaches [4,5]. It is known that nonlinear unknown input 

observer design and diagnosis are difficult problems because powerful design methods are 

lacking to deal with nonlinearities. Unknown input observer design for general nonlinear 

systems is still largely a problem, and thus a nonlinear unknown input observer based on 

fault diagnosis remains an area for further research [6,7].  
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Recently several researchers have explored a Takagi-Sugeno (TS) fuzzy observer to deal 

with nonlinearity in problems detection and diagnosis. In [8] the authors proposed linear 

parameter-varying FTC systems for pitch actuator faults occurring in the full load 

operation. In [9] a T-S fuzzy observer based FTC design is proposed to achieve 

maximization of the power extraction. Other examples of this usage of the unknown input 

observers can be seen in [10] where the former reports similar schemes applied on fault 

detection of power plant coal mills and the latter estimate power coefficients for wind 

turbines, some examples can be found of fault detection and accommodation of wind 

turbines. An observer based scheme for detection of sensor faults for blade root torque 

sensor is presented in [11]. In [13] an unknown input observer based scheme was proposed 

to detect such faults in a wind turbine. The contribution of this paper focuses on the design 

of the unkown multiple observers to detect, isolate the current sensor faults and fault of 

variation resistance in the rotor circuit in DFIG, based on the wind turbine T-S models. 

This proposed scheme is based on the Dedicated Observers (DOS) method using a 

nonlinear unknown input observers scheme, each of the DOS is dedicated to each output of 

generator to generate a set of residual signals. 

2. Modeling and observer design 

The model is derived from the voltage equations of the stator and the rotor. It is assumed 

that the stator and the rotor windings are symmetrical and symmetrically fed. The saturation 

of the inductances, iron losses, skin effect, and bearing friction is neglected. 

 

Figure. 1. Variable-speed wind system 

The general state-space model is given in (1), (2) and (4), where x(t) is the state system, u(t) 

is the control vector input, y(t) are measured and the output, v(t) is the vector of unknown 

input. The matrices A, B, R and C are matrices known as the parameters of matrix which are 

defined in appendix, consistent with the dimension signals.  
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where V stands for voltages (V), I stands for currents (A), R stands for resistors (Ω),   

stands for flux linkages (V·s). Indices d and q indicate direct and quadrature axis 

components, respectively, while s and r indicate stator and rotor quantities respectively. ωs 

and ωr are the stator and the (mechanical) rotor speed of the generator [12]. 
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: is the coefficient of Blondel                 (4)  

Induction machines have a nonlinear nature, since the back EMF (electromotive force) 

depends on the rotational speed of the machine. This leads to a system matrix A that 

depends on the rotational speed, which is a variable ( A is  the nonlinear matrix ) that is 

linear with respect to the states (e.g., currents) and also linear with respect to the rotational 

speed. The system matrices are explicitly given in (4),  where ωr is the mechanical rotor 

frequency, p is the number of pole pairs, and ωA is the rotational frequency of the reference 

frame. Using this description, it is easily possible to convert the system from a stator fixed 

into a synchronous reference frame or onto any other frame, since the influence of the 

rotation is described by ωA. Explicitly, a stator fixed system is using ωA = 0, while a system 

oriented with the stator’s voltage uses the stator’s angular frequency ωA = ωS =2π50 s
−1

. 

Moreover, the nonlinear models influences the rotor’s mechanical speed ωr.- see Figure 2. 

3. Obtaining multiple models 

The multiple models represent nonlinear systems in the form of an interpolation between 

models in generally linear  space premises. Each local model is a dynamic LTI (Linear 

Time Invariant) valid around an operating point. In a practical way, these models are 

obtained by identification, linearization around different various working points or by 

polytropic convex transformation. The interpolation of these local models using standard 

activation function is used to model global nonlinear systems. This approach, known as 

multiple models, is inspired by Takagi-Sugeno fuzzy models (T-S). 

Takagi-Sugeno Multiple models 

The structure of the Takagi-Sugeno model is the most widespread, both in the analysis and 

in the synthesis of the multiple models. The fuzzy models of T-S consist of set of rules. The 

global models are obtained by the aggregation of local models. It is expressed in the 

following form. 
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where r is the number of submodels,  ( )is the measurable premise’s variable,   ( ( ))are 

the membership functions verifying the convex sum’s property     ( ( ))    and 

∑   ( ( )) 
     ,  ( )    ,  ( )     and  ( )     represent respectively the state, 

the output and input vectors v(t) is the unknown input vector,{              } are the sub 

models matrices. 

Fault detection and isolation in DFIG driven by a wind turbine with a variable rotor resistance
HAKIM OUYESSAAD, HOUCINE CHAFOUK

15



Design of  unknown input observers 

In this section, we consider a nonlinear continuous time described by a multiple models, 

using activation functions that depend on the state of the system.  

 {
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   is the gain of the i

th
 local observer, E is a 

transformation matrix.  

Using the expression of  ̂( ) given by (6) the expression of the error becomes: 
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the time derivation of the estimation error is given by: 
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Solving Method 

The method of resolution has been proposed to solve non-linear matrix inequalities and 

bilinear eq. [13]. 

(       )
    (       )         {     } (9) 

we consider the following change of variable:                (10) 

we consider the following Lyapunov function given by: 

(   )
    (   )       

   
         {     }  (11) 

the solution of the inequality (11) can then be obtained using LMI conditions. For more 

information on the development of the method used to refer to [14,15]. 

4. Application to the diagnosis of the DFIG wind turbine 

The multiple models (5) of the DFIG, in case of the presence of the faults current sensors. 

The different faults are modelized by an additional signal fc(t) in equation of measurement. 

The observed system becomes: 

{
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where   ( )  [   ( )    ( )    ( )    ( ) ]
 is the sensors fault vector, the non-linear 

models of the generator. 
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4.1. Simulation model of the generator 

In order to assess the results of the simulation, we simulate two parallel models: multiple 
models and nonlinear models. 

 

 

 

 

 

 

Figure. 2. The generator speed 
 

The input applied is the same as that used for the non-linear models and the multiple 

models. Figure 3 show the superposition of the components of the vector output of the 

nonlinear models of the DFIG, and the approximation by multiple models. 

     
Figure.3. The output the non-linear model of DFIG and the multiple models estimation 

 

The generation of residuals is a fundamental step in designing a diagnosis based on models. 

In theory, a residual should be zero in the absence of fault and significantly different from 

zero otherwise. It is then necessary to introduce detection thresholds to avoid false alarms.  

4.2. Detection current sensors faults using DOS 

The first scenario consists in introducing multiple faults in the outputs y1 and y4 .The fault is 

injected f1(t) and f4(t), at t =0.189s and disappears t=0.193s. The fault consists of constant 

amplitude equal to 5% of the maximum amplitude of the output stator current Ids and rotor 

current Iqr. The outputs y2(t) and  y3(t) are assumed without. It should be noted that in the 

simulation a measurement noise is added to the output of the DFIG (here, a random signal 

with zero mean and variance equal to 1).  

 

 

 

 

 

 

 

 

 

 

Figure. 4. Stator and rotor currents, the fault f1 and f4 in the current sensor 
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Using the DOS multiple observers, in this case, the i
th

 observer is controlled by the i
th

 

output of the system as well as by all of the inputs. Figure 5 shows the architecture of the 

bank of DOS multiple observers.  

 

 

 

 

Figure. 5. Structure of multiple observer DOS 

 

In this section, the detection of current sensor faults by the Luenberger multiple observers 

(5) will be focused on. The multiple observer1 (DOS1) reconstructs the models output 

using only the output y1, inputs u(t) and unknown input v(t) of the system. In this step the 

measurement y1 is affected by a fault f1, and y4 is affected by a fault f4. Fault f1 is show 

during its presence in y1 as is fault, f4 in y4 (red ellipse), as is show in Figure 4. Note that 

later r DOSi,j(t) is the fault indicator signal (residual), calculated from the difference between 

the j
th

 system output and the i
th

 estimated output, by the i
th

 DOS multiple observer. If the 

output has a fault, then there is a bad estimate of the state, and residual rDOSi,j(t) may be 

affected. The bench of DOS multiple observers enables us to generate different residuals 

with the presence of faults f1 and  f4 rDOS1(t) = [1 0 0 0] , rDOS2(t) = [0 1 0 0], rDOS3(t) = [0 0 

1 0] and rDOS(t) = [0 0 0 1]. From the results obtained it is found that the residuals rDOSii are 

affirmative on the presence of faults of y1(t) and y4(t), as is show Figure 6. 

 

 

 

 

 

 

Figure. 6. Residual rDOS obtained from DOSi multiple observer 

 
The multi observer DOS is capable to detect and isolate multiple and simultaneous faults. 

5. Detection fault a variable rotor resistance 

In order to validate the suggested diagnosis technique, acquisitions were performed 
using the variation of the rotor resistance of the generator. The choice of this parameter is 
explained by the various faults which affect the generator, which are apparent by a change 
due to temperature or a short circuit in the rotor and the stator. This observation was made 
in [16] and [17] where it was also found that the stator resistance Rs and Rr rotor are 
affected by the change of temperature operation for hot and cold tests. Here the variation in 
the initial values is around ±30% for both resistances. For a hot operation of the DFIG, the 
variation resistance is more important, with 30% for Rs and 20% for Rr.  
The variations of the generator parameter are defined as system faults, which reflect a 
change in the parameters of the system. These faults can also be due to aging of the 
insulation resistance or saturation. It is obvious that the changes of resistance due to 
temperature are taken into account in the estimation procedure in the matrix A. This 
translates directly to the rotor and stator current in the DFIG generator. In [17] the author 
noted that the variation of the electrical parameters for a test concerns cold and hot 
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resistances. Temperature is the only parameter affecting resistances: a cold one will wake 
resistance decrease, where’s a hot one will make then increase. In our study we specifically 
focus on the fault and the variation of the rotor resistance Rr. 

 

 

 

 
 

Figure. 7. Variable rotor resistance 

5.1. Output error identification 

We define the estimation error (residual identification noted rids and ridr in the d-axis and 

the q-axis respectively) between the actual output for the nonlinear system (simulated 

currents     
  and     

 ) and the output simulated by the (estimated)  multiple models  ̂    

and  ̂    by: 

for stator (
         

   ̂  
         

   ̂  
)             (

         
   ̂  

         
   ̂  

) 
(13) 

5.2. Analysis of residuals  

For each residual rds(t) and rdr(t), a tolerance τ (threshold) must be determined. The value of 

tolerance, is set according to the statistical characteristics of each residual in a system 

functioning normally. The tolerance value τ can, for example, be determined in this case 

compared to the current generator. For this type of generator tolerance not to exceed 3% 

and 5% of the nominal value (maximum current), to guarantee the proper functioning of the 

generator, and so as not to damage it. 0 or 1, that is affected or not by fault, is assigned to 

each residual. In simplified terms, the detection of faults in a residual is similar to the 

following logic test: if  |      |          |      |      then no faults can affects residuals, 

and if |      |         |      |      then residuals are affected by a fault. 

1
st
 Case - Variation ΔRr (increase) of resistance Rr; To see the behavior of the fault 

resistance on the rotor and stator generator operation, we propose to run a test in the 

presence of the rotor resistance variation. Table 1, shows the different cases for the 

simulation generator with an  ΔRr variation (increase) of resistance Rr from 0% to 100% of 

its nominal value. In order to ensure a smooth functioning, only the expression of resistance 

in the rotor A matrix has been changed. The choice of the resistance variation of the values 

is very important, due to the comment previously mentioned, and then the application of the 

diagnosis method is used to detect faults of variation of resistance. 

Table 1.  Variation in the rotor resistance for operating at high temperature 

Operating at 

high temperature 

1th case 

0 % 

2nd case 

60% 

3nd case 

80% 

4nd case 

100% 

ΔRr 0 Ω 0.0642 Ω 0.0856 Ω 0.1070 Ω 

Rr 0.1070 Ω 0.1712 Ω 0.1926 Ω 0.2140 Ω 
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Figure7 shows the four currents of the rotor generator idr, obtained by the variation of the 

rotor resistance Rr following Table 1, use multiple model estimation 

 

 

 

 

Fig. 7. Change in the rotor current due to change in the rotor resistance Rr (0% to 100%) 

We note that the variation of rotor resistance produces a change in the rotor current idr, 

compared to the normal operation of the generator. As can be seen in the following figure, 

it represents the residuals for hot operation i.e. it corresponds to the increase in the rotor 

resistance. Figure 8 shows the evolution of residuals for different values of rotor resistance 

used, the residuals are obtained from the difference between the new rotor currents 

estimated by the multiple model obtained with the variation of the resistance Rr (0.1712 Ω, 

0.1926 Ω and 0.2140 Ω)  and the rotor current of the generator with Rr = 0.1070 Ω. Close 

observation of Figure 9 it can be seen how the three residuals are relative to the change of 

the resistance Rr. 

 

 

 

 

Figure. 8. Evolution of residual signal with variation resistance Rr 
 

We see that there is an important variation of residuals, when the rotor resistance exceeds 
60% of the nominal value. 

5.3. Decision system 

Fault location is based on the comparison of the currents obtained for the system operation 

with the rotor resistance Rr = 0.1070 Ω (sane system) and operation with a variable 

resistance. In this part of the detection and isolation fault, we used values  for the thresholds 

(τ = 3 %   the maximum value of the current). The application of the detection test was 

applied to the residuals signals see Figure 8. Figure 9 shows the decision function of faults 

with the residual signals analysis, with τ = 3%. 

 

 

 

 

 

Figure. 9. Detection and isolation faults 

This part represents the influence of the rotor resistance variation on the currents rotor in 
the reference frame d (idr). It was found that the currents iqr, ids and iqs vary, this variation of 
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the current is due to the change (increase) of the value of resistor Rr between 0% and 
100%. With the same reasoning as that applied to the current idr it detects the faults which 
affect the currents iqr, ids and iqs. 
2

nd
 Case - Variation ΔRr (decrease) of resistance Rr; - see Table 2 and Figure 10. This last 

shows the different cases of simulation generator with ΔRr variation (decrease) resistance Rr 

0% to -90% of its nominal value. 

Table 2. Variation in the rotor resistance for operating at Low temperature 

Operating 

at Low temperature 

1th case 

0 % 

2nd case 

-40% 

3nd case 

-80% 

4nd case 

-90% 

ΔRr 0 Ω -0.0535 Ω -0.0856 Ω -0.0963 Ω 

Rr 0.1070 Ω 0.0535 Ω 0.0214 Ω 0.0107 Ω 
 

 

 

 

 

Figure. 10. Change in the rotor current due to change in the rotor resistance Rr (0% to -90%) 

 

 

 

 

 

Figure. 11. Evolution of residual signal with variation resistance Rr 0% to -90% 

 

 

 

 

 

Figure. 12. Detection and isolation faults for τ = 3% (Low temperature) 

It can be seen that, during the fault occurrence, the second component of     = 80%,     = -

80% and the third component     = 100% and     = -90%. Both have mean values different 

from zero. This behavior corresponds to the one already presented in the paragraph (5), 

with respect to the threshold value. The fault is correctly detected and isolated, see Figure 9 

and Figure12. The fault is isolated within the required mean detection delay. In this section, 

we studied the influence of the rotor resistance of the rotor currents, similar results have 

been observed on other currents iqr ids and iqs. 

Conclusion 

In this paper, the problem of current sensor and variable rotor resistance fault detection and 

isolation, for a DFIG driven by a wind turbine, has been addressed. An unknown input 

observer using TS models, was then used for state estimation and detection, isolation of 
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current sensor faults, which can affect nonlinear models. The approach has been validated 

using simulated signals of a double-fed induction generator for wind turbines. Through 

simulations, it has been demonstrated that multiple current sensor faults for rotor and stator 

have been correctly detected and isolated with a DOS. The future extension of this work 

lies in the control of a generator with a variation resistance in the rotor circuit of the 

machine.  

Appendix 

Parameters of the DFIG: Rated power (P) = 22 Kw, mutual inductance (Lh) = 45.8 mH, 
stator inductance (Ls) = 46.8 mH, rotor inductance (Lr) = 46.8  mH, stator resistor (Rs) = 
0.1315 Ω, rotor resistor (Rr) = 0.1070 Ω, pairs of poles (p) = 2, [7]. 
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